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Deep Reconstruction Models for Image Set
Classification

Munawar Hayat, Mohammed Bennamoun and Senjian An

Abstract—Image set classification finds its applications in a number of real-life scenarios such as classification from surveillance
videos, multi-view camera networks and personal albums. Compared with single image based classification, it offers more
promises and has therefore attracted significant research attention in recent years. Unlike many existing methods which assume
images of a set to lie on a certain geometric surface, this paper introduces a deep learning framework which makes no such prior
assumptions and can automatically discover the underlying geometric structure. Specifically, a Template Deep Reconstruction
Model (TDRM) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using
Gaussian Restricted Boltzmann Machines (GRBMs). The initialized TDRM is then separately trained for images of each class
and class-specific DRMs are learnt. Based on the minimum reconstruction errors from the learnt class-specific models, three
different voting strategies are devised for classification. Extensive experiments are performed to demonstrate the efficacy of the
proposed framework for the tasks of face and object recognition from image sets. Experimental results show that the proposed
method consistently outperforms the existing state of the art methods.

Index Terms—Image Set Classification, Deep Learning, Auto-Encoders, Video based Face Recognition, Object Recognition
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1 INTRODUCTION

Recognition problems in computer vision are mainly based
on single images [1], [2]. With significant advances in
imaging technology, multiple images of a person or an
object are becoming readily available in a number of real-
life scenarios. Examples include security and surveillance
systems, personal albums acquired over a period of time
and multi-view camera networks. Recognition from these
multiple images is commonly formulated as an image set
classification problem and has gained significant attention
from the research community in recent years [3]–[13].

Compared with single image based classification, recog-
nition from image sets is more appealing as it can effec-
tively handle a wide range of appearance variations within
images. These could be caused by changing illumination
conditions, different backgrounds, viewpoint variations,
non-rigid deformations, occlusions and disguise. Image set
classification methods commonly model the appearance
variability information within images of a set on a geomet-
ric surface such as an image set modeled by a subspace
[3], [15], a combination of subspaces [4], [16], a point
on the Grassmannian [7] or Lie Group [9] of Riemannian
manifold. This requires prior assumptions in regards to
the specific category of the geometric surface on which
images of the set are believed to lie. In contrast, this paper
introduces a deep learning framework which makes no
such prior assumptions regarding the underlying geometry
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and can instead automatically discover the structure of
the complex non-linear surface on which images of the
set (under different variations) are present. The proposed
framework (see block diagram in Fig. 1) first defines
a Template Deep Reconstruction Model (TDRM) whose
weights are initialized with an unsupervised layer-wise pre-
training using Gaussian Restricted Boltzmann Machines
(GRBMs). The initialized TDRM is then separately trained
for each class (using all images of that class) to learn class-
specific DRMs. The training is performed in a way that the
DRM learns to reconstruct images of that class. A class-
specific model is therefore made to learn the structure and
the geometry of the complex non-linear surface on which
images of that class are present. For classification of a given
test image set, we first reconstruct each of its images from
the learnt class-specific DRMs. The reconstruction errors
from the respective DRMs are then computed and three
different voting strategies are introduced to decide on the
identity of the test image set. The proposed framework is
extensively tested for the tasks of image set classification
based face recognition on Honda/UCSD [17], CMU Mobo
[18], YouTube Celebrities [19], a composite Kinect dataset
[20], [21], PubFig [22], a subset of YouTube Faces [23]
and COX [24] datasets; and object recognition on ETH-80
[25] dataset. The experimental evaluations and comparisons
with existing methods show that the proposed method
consistently achieves state of the art performance.

Followings are the major contributions of our work. 1)
A novel deep learning based framework is introduced for
image set classification (Sec. 3). Deep learning has recently
gained significant success in a number of areas [26], [27],
but its application to image set classification has not yet
been explored. In this work, we propose the first deep learn-
ing based image set classification framework. The proposed
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Fig. 1: Block diagram of the proposed Deep Reconstruction Models (DRMs) based image set classification framework. The framework
constitutes training and testing. During training, we first define a Template DRM (TDRM) and initialize its parameters by unsupervised
pre-training using Gaussian Restricted Boltzmann Machines (GRBMs). The initialized TDRM is then separately trained with training
images of each class to learn class-specific DRMs. During testing, the learnt DRMs are used to reconstruct images of a test image
set and a voting strategy is adopted for classification.

framework learns Deep Reconstruction Models (DRMs)
which can automatically discover the underlying geometry
of the data. 2) For classification, three different voting
strategies are suggested (Sec. 4.4). These include majority
voting, weighted voting and preferential weighted voting.
These strategies effectively incorporate the reconstruction
error information from the DRMs to make a decision
regarding the class of a test image set. 3) To further refine
the classification performance, a method for automatic pose
group approximation is introduced (Sec. 4.4.3). 4) Face
recognition from Kinect data is formulated as an RGB-
D based image set classification problem (Sec. 5.2.4).
Compared with single image based classification, this
formulation produces a better performance and does not
require any expensive pre-processing steps. 5) In order
to evaluate the performance of the proposed framework,
extensive experiments are done along with comparisons to
existing state of the art methods for image set classification
(Sec. 5). The experimental results show that the proposed
method achieves the best classification performance and its
computational time during testing is comparable or better
than the existing methods. A preliminary version of this
work appeared in [13]. This paper extends [13] by providing
two alternative voting strategies, a method for pose group
approximation, experimental evaluation on more real-life
datasets and a more detailed description of the work.

2 RELATED WORK

Image set classification involves two major steps: 1) to
find a representation of the images in the set, and 2) to
define suitable distance metrics for the computation of
the similarity between these representations. Based on the
used type of representation, existing image set classification
methods can be categorized into parametric-model and non-
parametric-model methods. The parametric-model methods
[28] approximate an image set in terms of a certain sta-
tistical distribution model and then measure the similarity
between two image sets (two distribution models) using
e. g. KL-divergence. These methods fail to produce a desir-
able performance if there is no strong statistical relationship
between the test and the training image sets. The other
type of image set representation methods (non-parametric
methods) do not model image sets in terms of statistical
distributions. These methods have shown promising results
and are being actively developed recently [3]–[14].

The non-parametric model based methods represent an
image set either by its representative exemplars or on a
geometric surface. Based upon the type of representation,
different distance metrics have been developed to determine
the between-set distance. For example, for image sets
represented in terms of representative exemplars, the set-set
distance can be defined as the Euclidean distance between
the set representatives. These can simply be the set mean
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[4] or adaptively learnt set samples [6], [8]. Cevikalp et al.
[6] learn the set samples from the affine hull or convex
hull models of the set images. The set to set distance is
then termed as Affine Hull Image Set Distance (AHISD)
or Convex Hull Image Set Distance (CHISD). Hu et al.
[8] define the set-set distance as the distance between
their Sparse Approximated Nearest Points (SANPs). The
SANPs of two sets are first determined from the mean
image and the affine hull model of the corresponding
sets. The SANPs are then sparsely approximated from
the set’s sample images while simultaneously searching
for the closest points between sets. As set representative
based methods require the computation of a one-to-one set
distance, these methods are capable of handling intra set
variations very effectively. However, their performance is
highly prone to outliers. They are also computationally very
expensive as a one-to-one match of the query set with all
sets in the galley is required. These methods could therefore
be very slow in the case of a large gallery.

Unlike set representative based methods, the second cat-
egory of non-parametric methods model a complete image
set by a point on a geometric surface [4], [5], [7], [9] . The
image set can be represented either by a subspace, mixture
of subspaces or on a complex non-linear manifold. Principal
angles have been very commonly used to determine the dis-
tance between image sets represented by a linear subspace.
The d principal angles 0 ≤ θ1 ≤ · · · ≤ θd ≤ π

2 between two
subspaces are defined as the smallest angles between any
vector in one subspace and any other vector in the second
subspace. The similarity between subspaces is then defined
as the sum of the cosines of the principal angles. For image
set representations on manifolds, appropriate distance met-
rics have been adopted such as the geodesic distance [29],
[30], the projection kernel metric [31] on the Grassmann
manifold, and the log-map distance metric [32] on the Lie
group of Riemannian manifold. In order to discriminate
image sets on the manifold surface, different learning
strategies have been developed. Mostly, a discriminant anal-
ysis method is contrived for different set representations.
Examples include Discriminative Canonical Correlations
(DCC) [3], Manifold Discriminant Analysis (MDA) [5],
Graph Embedding Discriminant Analysis (GEDA) [7] and
Covariance Discriminative Learning (CDL) [9].

Our literature review suggests that most existing methods
represent images of a set on some geometric surface. For
example, AHISD [6], CHISD [6], SANP [8] and Regular-
ized Nearest Point (RNP) [10] model images of the set by
their geometric structure (affine hull or convex hull); DCC
[3], Mutual Subspace Method (MSM) [15] model an image
set by a subspace; Manifold to Manifold Distance (MMD)
[4], MDA [5] and GEDA model an image set as a point
on Grassmannian manifold and CDL [9] models an image
set on Lie group of Riemannian manifold. These methods
therefore make prior assumptions about the underlying
geometry on which images of a set are believed to lie. In
contrast, our proposed method defines a TDRM which can
automatically learn the underlying geometric structure. Our
TDRM has multiple layers stacked together through non-

Fig. 2: Structure of the Template Deep Reconstruction Model
(TDRM). The TDRM is based on an auto-encoder and has two
parts: an encoder and a symmetric decoder. The encoder finds a
low dimensional meaningful representation of the input data which
is then used by the decoder to reconstruct the original input

linear activation functions. The TDRM therefore becomes
capable of discovering the complex geometric surface on
which images of a set are present.

3 DEEP RECONSTRUCTION MODELS

We first define a Template Deep Reconstruction Model
(TDRM) which will be used to learn the underlying
structure of the data. The architecture of our TDRM is
summarized in Fig 2 and the details are presented in
Sec 3.1. For such a deep network to perform well, an
appropriate initialization of the weights is required. We
initialize the weights of the TDRM by performing pre-
training in a greedy layer-wise fashion using Gaussian
Restricted Boltzmann Machines (see details in Sec 3.2).
The TDRM with the initialized weights is then separately
fine-tuned for each of the k classes of the training image
sets (see details in Sec. 3.3). We therefore end up with
a total of k fine-tuned class-specific Deep Reconstruction
Models (DRMs). The fine-tuned models are then used for
image set classification (see details in Sec 4).

3.1 The Template Deep Reconstruction Model

As depicted in Fig 2, our TDRM is based on an Auto-
Encoder (AE) and consists of two parts: an encoder and
a decoder. Both the encoder and the decoder have three
hidden layers each, with a shared third layer (the central
hidden layer). The encoder part of the TDRM finds a
compact low dimensional meaningful representation of the
input data. We can formulate the encoder as a combination
of layers connected by a non-linear activation function s(·)
which maps the input data x to a representation h as follows
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h = s(W
(3)
e h2 + b

(3)
e ),

h2 = s(W
(2)
e h1 + b

(2)
e ),

h1 = s(W
(1)
e x + b

(1)
e ),

(1)

where W
(i)
e ∈ Rdi−1×di is the encoder weight matrix for

layer i with di nodes, b(i)
e ∈ Rdi is the bias vector and

s(·) is the element-wise non-linear activation function1. The
encoder parameters are learnt by combining the encoder
with the decoder and jointly training the encoder-decoder
structure to reconstruct the input data by minimization of
a cost function (Sec. 3.3). The decoder can therefore be
defined as a combination of layers joined together by a
non-linear activation function which reconstruct the input
x from the encoder output h. The reconstructed output x̃
of the decoder is given by

x̃ = s(W
(3)
d x2 + b

(3)
d ),

x2 = s(W
(2)
d x1 + b

(2)
d ),

x1 = s(W
(1)
d h + b

(1)
d ).

(2)

Hereafter we will represent the complete encoder-
decoder structure (the TDRM) by its parameters θTDRM =

{θW, θb}, where θW =
{
W

(i)
e ,W

(i)
d

}3

i=1
and θb ={

b
(i)
e ,b

(i)
d

}3

i=1
. Later (in Sec. 3.3) this template will be

separately fine-tuned for all classes of the training image
sets.

3.2 TDRM’s Parameter Initialization

The above defined TDRM is used to learn class specific
DRMs. This is accomplished by separate training of the
TDRM with images of each class of the training data.
The training is performed with stochastic gradient descent
through back propagation [33]. The training may fail if
the TDRM is initialized with inappropriate weights. More
specifically, if the initialized weights are too large, the
network gets stuck in local minima. On the other hand, if
the initialized weights are too small, the vanishing gradient
problem is encountered during back propagation in the
initial layers and the network becomes infeasible to train
[33]. The weights of the template are therefore initialized
by performing unsupervised pre-training. For that, a greedy
layer-wise approach is adopted and Gaussian RBMs are
used. Below, we first present a brief overview of RBMs
(for the sake of completion) and then explain their usage
for our TDRM’s parameter initialization.

An RBM [34] is a generative undirected graphical model
with a bipartite structure of two sets of binary stochastic
nodes termed as the visible ({vi}Nv

1 , vi ∈ {0, 1}) and the
hidden layer nodes ({hj}Nh

1 , hj ∈ {0, 1}). The nodes of the
visible layer are symmetrically connected with the nodes of
the hidden layer through a weight matrix W ∈ RNv×Nh

but there are no intra layer node connections. The joint
probability p(v,h) of the RBM structure is given by

1. In our case we use a sigmoid defined as s (z) = 1
1+e−z

p(v,h) =
1

Z
exp(−E(v,h)), (3)

where Z is the partition function (used as a normalization
constant) and E(v, h) is the energy function of the model
defined as

E(v,h) =
∑
i

bivi −
∑
j

cjhj −
∑
ij

wijvihj , (4)

where b and c are the biases of the visible and hidden
layer nodes respectively. The goal of an RBM is to learn
the model parameters (W,b, c) in order to generate data
similar to the training data. This is achieved by maximizing
the likelihood of the training data. Due to the restriction that
there are no connections between nodes of the same layer,
inference becomes readily tractable for RBMs unlike most
directed graphical models. This has rendered RBMs very
successful in a wide range of applications [35], [36]. The
parameter of an RBM are learnt by a numerical method
called Contrastive Divergence (CD) [37].

The standard RBM developed for binary stochastic data
can be generalized to real valued data by appropriate mod-
ifications of its energy function. Gaussian RBM (GRBM)
[36] is one such popular extension whose energy function
is defined by modifying the bias term of the visible units
as

EGRBM(v,h) =
∑
i

(vi − bi)2

2σ2
i

−
∑
j

cjhj −
∑
ij

wij
vi
σi
hj ,

(5)
where σi is the standard deviation of the real valued
Gaussian distributed inputs to the visible node vi. It is
possible to learn σi for each visible unit but this becomes
difficult when using CD for GRBM parameter learning. We
instead adopt an alternative approach and fix σi to a unit
value in the data pre-processing stage (see Sec 4.2). The
conditional probability distributions needed for inference
and generation are given by

p(hj = 1|v) = s (
∑
i wijvi + cj) ,

p(vi|h) = 1
σi

√
2π

exp(−(vi−ui)
2

2σ2
i

),
(6)

where
ui = bi + σ2

i

∑
j

wijhj . (7)

Since our data is real valued, we use GRBMs to initialize
the weights of our TDRM. Two layers are considered at a
time and the GRBM parameters are learnt. Initially, the
nodes of the input layer are considered to be visible units
v and the nodes of the first hidden layer as the hidden
units h of the first GRBM and its parameters are learnt.
The activations of the first GRBM’s hidden units are then
used as an input to train the second GRBM. The process
is repeated for all three hidden layers of the encoder part
of the TDRM structure. The weights learnt for the encoder
layers are then tied to the corresponding decoder layers
i. e. W(3)

d = W
(1)
e

T
,W

(2)
d = W

(2)
e

T
,W

(1)
d = W

(3)
e

T

(See Fig. 2 for notations).
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3.3 Learning Class Specific Models
The TDRM structure with the initialized weights is trained
to learn class-specific DRMs. The training of a DRM is
carried out for minimization of the reconstruction error over
all m training examples of that class

J (θTDRM) =
1

m

m∑
t=1

∥∥∥x(t) − x̃(t)
∥∥∥2 . (8)

In order to avoid over-fitting and improve generalization
of the learnt DRM to unknown test data, we introduce
regularization terms into the cost function of TDRM. A
weight decay penalty term Jwd and a sparsity constraint
Jsp are added and the modified cost function becomes

Jreg (θTDRM) =
1

m

m∑
t=1

∥∥∥x(t) − x̃(t)
∥∥∥2 + λwdJwd + λspJsp, (9)

where λwd and λsp are regularization parameters. Jwd en-
sures small values of weights for all hidden units. It is
defined as the summation of the squared Frobenius norm
of all weight matrices

Jwd =

3∑
i

∥∥∥W(i)
e

∥∥∥2
F

+

3∑
i

∥∥∥W(i)
d

∥∥∥2
F
. (10)

Jsp enforces that the mean activation ρ̄i,j (over all m
training examples) of the jth unit of the ith hidden layer is
as close as possible to a sparsity target ρ. It is defined in
terms of the KL divergence as

Jsp =

5∑
i

∑
j

KL (ρ||ρ̄i,j) (11)

=

5∑
i

∑
j

ρ log
ρ

ρ̄i,j
+ (1− ρ) log

1− ρ
1− ρ̄i,j

.

Here the KL divergence is computed between two distri-
butions with means ρ and ρ̄i,j . The sparsity target ρ is
a constant (typically a small value, set to 10−3 in our
experiments in Sec. 5), whereas ρ̄i,j is determined by
taking the mean of the activation (see Eqs. (1) and (2) for
activations) of a hidden unit over all training examples.

Synthetic Examples for Minority Classes
While training TDRM to learn class-specific DRMs, sub-
optimal models might be learnt for classes with only a
few training examples. To overcome this, we oversample
the minority class (a class with few training examples)
and create synthetic training examples. Specifically, we use
the Synthetic Minority Oversampling TEchnique (SMOTE)
[38]. For each training example of the minority class, we
take the difference between the example and its nearest
neighbor. The difference is then multiplied with a random
number between 0− 1 and added to the original example.
This gives a synthetic example which lies on the line joining
the original example and its nearest neighbor. The total
number of required synthetic examples can be controlled
by two parameters i. e. the number of nearest neighbors
considered for each example and the number of points
generated on the line joining the original example and its
nearest neighbor.

4 IMAGE SET CLASSIFICATION ALGORITHM

We are now ready to describe our reconstruction error based
image set classification algorithm. As shown in Figure 1,
the algorithm comprises two parts: training to learn class-
specific DRMs and testing (using the learnt DRMs) to
decide the identity of a query image set. The algorithms
for training and testing are summarized in Alg 1 and Alg 2
respectively. The details are presented below.

4.1 Problem Formulation
Given k training image sets X1,X2, · · · Xk and their corre-
sponding class labels yc ∈ [1, 2, · · · k], where the image set
Xc = {x(t)|y(t) = c; t = 1, 2, · · ·Nc} has Nc images x(t)

belonging to class c, the problem of image set classification
is formulated as follows: given a test image set Xtest, find
the class ytest to which Xtest belongs to. Note that in our
formulation, if a class has multiple training image sets, we
combine them into a single set.

4.2 Data Pre-Processing
The data is first pre-processed by encoding each image in
terms of a Local Binary Pattern (LBP) [39] feature vector
and performing PCA whitening. Specifically, each image is
divided into 4×4 distinct non-overlapping uniformly spaced
rectangular blocks and LBP histograms are computed for
every block. Histograms from all blocks are concatenated
into a single vector Rd which is used as a feature vector.
There exists a strong correlation between adjacent patches
of an image causing a redundancy in the encoded features.
PCA whitening un-correlates the features while simulta-
neously reduces their dimensionality by discarding the
redundant information. The procedure for PCA whitening
is described below for completeness.

The images from all training image sets are encoded in
terms of their LBP features and organized into columns
of a matrix X ∈ Rd×n, where d is the dimensions of the
feature vector and n is the total number of images. The
covariance matrix of X is given by Σ = X̂T X̂ , where X̂
is computed by subtracting the mean i. e. X̂ = X− 1

n

∑
X .

Singular Value Decomposition of the covariance matrix
results Σ = USV . The column vectors in U are orthogonal
to each other and are arranged in descending order of their
significance. S is a diagonal matrix with singular values
σi = Si,i on the diagonal. Let Û contain the top k column
vectors from U corresponding to the k largest singular
values in S. Given any image x(t) ∈ Rd, we project it
onto the matrix Û

x̂(t) = ÛTx(t). (12)

The above procedure reduces the dimensionality of x(t)

from Rd to Rk. The value of k2 determines the amount
of energy to be retained. The adjacent values of x̂(t) are
un-correlated as it has been projected onto a matrix whose

2. In our case, d = 944 (the dimensions of LBP feature vector) and
k = 400 (retains about 85% energy)
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vectors are orthogonal to each other. Next, we divide each
entry of x̂(t) by

√
σi + ε, where σi is the covariance of

each feature (determined by the diagonal matrix S) and ε
is a small value (10−5 in our experiments) used to avoid
zero division and reduce the effect of noise. Thus the final
output of PCA whitening is

ˆ̂x(t) =
x̂(t)

√
σi + ε

. (13)

This ensures unit variance for each of the input feature
ˆ̂x(t). For the sake of notational simplicity, we will denote
a pre-processed image ˆ̂x(t) by x(t) here and onwards.

4.3 Training of DRMs

Algorithm 1 Learning Deep Reconstruction Models

Input: Training image sets: X1,X2, · · · Xk
1: Compute LBP features
2: Perform PCA whitening
3: X̂ : Randomly selected small subset from X =

⋃
c Xc

4: Train GRBMs using X̂ to initialize θTDRM = {θW, θb}
5: for c = 1 · · · k do
6: θc ← min

θTDRM
Jreg (θTDRM;Xc)

7: end for
Output: Class-specific DRMs θ1, θ2, · · · θk

After pre-processing the training data, we gather images
from all training sets into a single data set X =

⋃
c Xc.

Next, a subset X̂ is generated from X . X̂ contains a
small fraction (500 in our experiments) of randomly picked
images from X , drawn equally from all classes. X̂ is
used for layer-wise GRBM training of all layers of the
encoder part of the template. The weights of the decoder
layers are then initialized with their corresponding tied
weights of the encoder layers. Note that using X̂ (instead of
X ) for TDRM’s parameter’s initialization ensures that the
parameters are not biased towards the majority classes (the
classes with more images). Furthermore, the time required
to train GRBMs reduces significantly with a fewer number
of images in X̂ .

Now that we have the TDRM structure with the initial-
ized weights, we separately fine tune its parameters θTDRM
for each of the k training image sets. We therefore learn
k class-specific DRMs i. e. θ1, θ2, · · · θk. A class-specific
model θc is achieved by optimization of the regularized
cost function Jreg over all images of the set Xc i. e.

θc = min
θTDRM

Jreg (θTDRM;Xc) . (14)

Since the model is being trained to reconstruct the input
data, it might achieve perfect reconstruction simply by
learning an identity function. This is not desirable as the
model would not learn any useful representations of the
input data and would therefore not generalize to the un-
known test data. Appropriate settings in the configurations
of the TDRM are therefore required to ensure that a class

specific model learns the underlying structure of the data
and produces useful representations. For our TDRM, since
the number of nodes in the first hidden layer is larger than
the dimensions of the input data, we first learn an over-
complete representation of the data by mapping it to a high
dimensional space. This high dimensional representation is
then followed by a bottleneck i. e. the data is mapped back
to a compact, abstract and low dimensional representation
in the subsequent layers of the encoder. With such a
mapping, the redundant information in the data is discarded
and only the required useful content of the data is retained.
It can be shown that if we reduce our TDRM structure
to have only a single hidden layer connected through a
linear activation function, the weights learnt by the structure
would be similar to a PCA subspace. However, in our case,
since the activation functions used are non-linear and a
number of hidden layers are stacked together, the TDRM
becomes capable of adapting itself to very complex non-
linear manifold structures.

4.4 Classification

Algorithm 2 Image Set Classification from DRMs

Input: Test image set Xtest = {x(t); t = 1, 2, · · ·Ntest}
Class-specific DRMs: θ1, θ2, · · · θk

1: Compute LBP features
2: Perform PCA whitening
3: for each image x(t) ∈ Xtest do
4: for θc = θ1 · · · θk do
5: {W(i)

e ,W
(i)
d ,b

(i)
e ,b

(i)
d }3i=1 ← θc

6: h(t) ← s(W
(3)
e s(W

(2)
e s(W

(1)
e x(t)+b

(1)
e )+b

(2)
e )+b

(3)
e )

7: x̃(t)
c ← s(W

(3)
d s(W

(2)
d s(W

(1)
d h(t) + b

(1)
d ) + b

(2)
d ) + b

(3)
d )

8: rc(x
(t))←

∥∥∥x(t) − x̃
(t)
c

∥∥∥
2

9: end for
10: end for
11: MV: ytest = arg max

c

∑
t δc(v

(t)) Refer to Eq (17)

12: WV: ytest = arg max
c

∑
t wc(x

(t)) Refer to Eq (18)

13: PWV: ytest = arg maxc
∑
t p
(
c|x(t)

)
Refer to Eqs (20)-

(26)
Output: Label ytest of Xtest

Given a test image set Xtest =
{
x(1),x(2), · · ·x(Ntest)

}
,

we separately reconstruct (using Eqs. (1) and (2)) each of
its image x(t) ∈ Xtest from all class specific DRMs θc, c =

1 · · · k. If x̃(t)
c is the reconstruction of the image x(t) from

model θc, then the reconstruction error is given by

rc(x
(t)) =

∥∥∥x(t) − x̃(t)
c

∥∥∥
2
. (15)

Given reconstruction errors rc(x(t)) from all class spe-
cific models, we propose three different strategies to deter-
mine the class (ytest) of the test image set (Xtest).

4.4.1 Majority Voting (MV)
Each image x(t) ∈ Xtest can cast only one vote. The vote
v(t) is cast to the class whose model reconstructs the image
with the least reconstruction error i. e.
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v(t) = arg min
c
rc(x

(t)). (16)

The votes casted by all images of Xtest are then counted
and the candidate class which achieves the maximum
number of votes is declared as the class (ytest) of the test
image set (Xtest)

ytest = arg max
c

∑
t δc(v

(t)), where

δc(v
(t)) =

{
1, v(t) = c,

0, otherwise.

(17)

4.4.2 Weighted Voting (WV)
An image x(t) ∈ Xtest casts a vote to all candidate classes.
The vote casted to each class is given a weight which is
determined by the reconstruction error from the respective
class-specific model. Specifically, the weight wc(x(t)) of
the vote casted by an image x(t) to class c is given by

wc(x
(t)) = exp(−γrc(x(t))). (18)

See Eq. (15) for rc(x(t)). γ is a parameter adjusted
by performing experiments on a cross validation set (see
Sec 5.1.1). The candidate class which achieves the maxi-
mum accumulated weight from all images of Xtest is then
declared as the class (ytest) of the test image set (Xtest)
i. e.

ytest = arg max
c

∑
x(t)∈Xtest

wc(x
(t)). (19)

4.4.3 Preferential Weighted Voting (PWV)
PWV is an extension of WV where preference is given to
the vote casted by an image based upon its pose. PWV is
designed for face datasets to give more preference to the
vote of a face image with a pose which is commonly present
in the training data. The class label ytest of the image set
Xtest using PWV is determined by

ytest = arg max
c

∑
x(t)∈Xtest

wc(x
(t))d(x(t)). (20)

Where wc(x(t)) (see Eq. 18) is a measure of the simi-
larity of the image from the cth class-specific model and
d(x(t)) is the preferential weight given to the vote casted
by the image x(t). d(x(t)) is determined in terms of the
head pose of the face image x(t). Specifically, to determine
d(x(t)), each image is first assigned to a pose group
by a pose group approximation method. d(x(t)) is then
computed in terms of the presence of the pose group of the
image x(t) in the training data. Here, we first describe our
pose group approximation method and then define d(x(t))
in Eqn. 26.
Pose Group Approximation: An image is said to belong
to a pose group g ∈ {1, 2, · · ·G}, if its pose along the pitch
direction (y-axis) is within θg ± 15◦. For our purpose, we
define G = 5 and θ =

[
−60, −30, 0, 30, 60

]
. The

process of pose group approximation constitutes two steps:
training and testing.

Training: Let Xg ∈ Rd×ng contain ng images x(t) ∈ Rd
whose pose is within θg ± 15◦. We automatically select
these images from a Kinect data set (see Sec 5.2.4). The
pose of Kinect images can be determined by the random
regression forest based method of [21]. From Xg , we want
to extract the directions of major data orientation. To do
that, we first subtract the mean image from Xg and compute
its covariance matrix Σg i. e.

X̂g = Xg −
1

ng

∑
t

x(t), (21)

Σg = X̂gX̂
T
g . (22)

Performing singular value decomposition of the co-
variance matrix Σg results, Σg = UgSgVg . Ug contains
eigenvectors arranged in the descending order of their
significance. From Ug , we select the top k eigenvector
corresponding to the k largest eigenvalues and represent
them as columns of a matrix Sg ∈ Rd×k. Sg is therefore a
subspace whose columns represent the predominant data
structure in the images of Xg . Next, during the testing
phase of pose group approximation, Sg is used for a linear
regression based classification strategy [40].

Testing: The pose group P(x(t)) of the image x(t) is
determined by

P(x(t)) = arg min
g

∥∥∥x(t) − x̃(t)
g

∥∥∥
2
, (23)

where x̃
(t)
g is linearly reconstructed from Sg as

x̃(t)
g = Sgα(t)

g . (24)

The above equation has an analytical solution given by

α(t)
g = (STg Sg)−1STg x(t). (25)

The above described method gives us the pose group of
an image. We use this method to determine the pose group
of all images of the training data as well as the images of
the query image set. Let g be the pose group of the image
x(t) ∈ Xtest of the test image set. The preferential weight
d(x(t)) for the image x(t) ∈ Xtest is then given by

d(x(t)) =
1∑

c
Nc

∑
Xc

∑
x(t)∈Xc

δgP(x(t)), (26)

where Nc is the number of training images for cth class
and δgP(x(t)) is the delta function given by

δgP(x(t)) =

{
1, P(x(t)) = g

0, otherwise.
(27)
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5 EXPERIMENTS

We evaluate and compare performance of the proposed
method with existing methods for the tasks of face and
object recognition. For face recognition, the performance
evaluation is presented for six RGB data sets (Honda/UCSD
[17], CMU Mobo [18], YouTube Celebrities (YTC) [19],
PubFig [22], a subset of YouTube Faces (YTF) [23] & COX
[24]) and an RGB-D Kinect dataset (obtained by combining
three Kinect datasets). For object recognition, we use ETH-
80 dataset [25]. The detailed description of each of these
datasets and the performance evaluation of our method and
the existing methods is presented in Sec 5.2. Here, the
common experimental settings are presented first.

5.1 Experimental Settings
The face from each frame in the videos of Honda/UCSD
and Mobo datasets is automatically detected using Viola
and Jones face detection algorithm [41]. However, in case
of YTC dataset, face detection by [41] fails in a significant
number of frames due to the poor image resolution and
the large head rotations. We therefore used the method in
[42] to track the face region across each video of YTC
dataset. For PubFig, YTF and COX datasets, we used the
already cropped face images provided with the respective
datasets. In the case of Kinect face datasets, the random
regression forest based classifier proposed in [21] is used to
automatically detect faces from depth images. As depth data
is pre-aligned with RGB, the same location of the detected
face in the depth image is used for the corresponding
RGB image. After a successful detection, the face region is
cropped and all colored images are converted to gray scale
levels. The cropped gray scale images are then resized to
20× 20, 40× 40 and 30× 30 for Honda/UCSD, Mobo and
YTC datasets respectively. The provided cropped faces of
PubFig, YTF and COX are resized to 20×24, 30×30 and
30× 30 respectively. The depth and the gray scale images
of the Kinect datasets are resized to 20×20. In the case of
the object dataset (ETH-80), the 128×128 cropped images3

are resized to 32 × 32. Histogram equalization is applied
on all images to minimize illumination variations.

5.1.1 Settings of Our Method
For TDRM’s parameter initialization and learning class
specific models, we adjust appropriate hyper-parameters
by following the guidelines in [43], [44]. The optimal
parameters are searched by doing grid search while per-
forming experiments on a cross validation set. Specifically,
for TDRM’s initialization using GRBMs, initial weights for
layer-wise GRBM training are drawn from a uniform ran-
dom distribution in the range

[
−.005 .005

]
. Contrastive

Divergence [37] is used to train GRBMs on 500 randomly
selected images from the training data. Mini-batches of
100 images are used and the training is carried out for 20
epochs. A fixed learning rate of 10−3 is used. In order to
train the initialized TDRM to learn class-specific models,

3. Available at http://www.d2.mpi-inf.mpg.de/Datasets/ETH80

we use an annealed learning rate (started with 2×10−3 and
multiplied by a factor of 0.6/epoch), an L2-weight decay
(λwd in Eq. (9)) of 10−2, a sparsity target (ρ in Eq. (11))
of 10−3 and non-sparsity penalty term (λsp in Eq. (9))
of 0.5. The training is performed by considering a mini-
batch size of 5 images for 30 epochs. For classification, we
use γ = 3 in Eq. (18) for WV and Eq. (20) for PWV.
Note that the mentioned hyper-parameters for TDRM’s
parameter initialization and learning class-specific models
are consistent across all datasets.

5.1.2 Settings of Compared Methods
We compare our proposed method with a number of
recently proposed state of the art image set classifica-
tion methods. The compared methods include Discrimi-
nant Canonical Correlation Analysis (DCC) [3], Manifold-
to-Manifold Distance (MMD) [4], Manifold Discriminant
Analysis (MDA) [5], the Linear version of the Affine Hull-
based Image Set Distance (AHISD) [6], the Convex Hull-
based Image Set Distance (CHISD) [6], Sparse Approxi-
mated Nearest Points (SANP) [8], Graph Embedding Dis-
criminant Analysis (GEDA) [7], Covariance Discriminant
Learning (CDL) [9], Regularized Nearest Points (RNP)
[10], Mean Sequence Sparse Representation Classification
(MSSRC) [11] and Set to Set Distance Metric Learning
(SSDML) [12]. The implementations provided by the re-
spective authors are used for all methods except CDL. We
carefully implemented CDL as it is not publicly available.
The parameters for all methods are optimized for best per-
formance. Specifically, for MSM, we apply PCA to retain
90% of the total energy. For DCC, we set the dimensions
of the embedding space to 100. The number of retained
dimensions for a subspace are set to 10 (90% energy is
preserved) and the corresponding 10 maximum canonical
correlations are used to compute set-set similarity. For
datasets with one training set per class (Honda/UCSD,
CMU, Kinect and PubFig), we randomly divide the training
set into two subsets to construct the within class sets as
in [3]. The parameters for MMD and MDA are adopted
from [4] and [5] respectively. The number of connected
nearest neighbors to compute the geodesic distance is either
set to 12 or to the number of images in the smallest
image set of the dataset. The ratio between Euclidean
distance and geodesic distance is optimized for all data
sets. The distance in case of MMD is computed in terms of
maximum canonical correlation. No parameter settings are
required for AHISD. For CHISD, the same error penalty
term (C = 100) as in [6] is adopted. For SANP, the
same weight parameters as in [8] are adopted for convex
optimization. For GEDA, we set k[cc] = 1, k[proj] = 100
and v = 3 (the value of v is searched over a range of 1-10
for best performance). The number of eigenvectors r used
to represent an image set is set to 9 and 6 respectively
for Mobo and YouTube Celebrities and 10 for all other
datasets. No parameter settings are required for CDL. For
RNP [10], PCA is applied to preserve 90% of the energy
and the same weight parameters as in [10] are adopted.
No parameter configurations are required for MSSRC and
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TABLE 1: Performance on Honda/UCSD dataset

Methods All-All 100-100 50-50 50-25 50-15 25-50 All-1
MSM [15] 88.21± 3.86 85.64± 4.39 83.08± 1.73 82.25± 4.32 80.67± 4.99 79.24± 4.97 57.69± 12.34
DCC [3] 92.56± 2.25 89.28± 2.46 82.05± 3.30 80.81± 8.81 80.23± 3.38 78.43± 2.71 3.84± 3.02
MMD [4] 92.05± 2.25 85.59± 2.16 83.12± 4.49 82.44± 5.19 80.38± 3.64 81.17± 3.75 −
MDA [5] 94.36± 3.38 91.79± 1.62 85.64± 5.82 84.97± 4.02 83.67± 5.77 84.74± 4.47 −
AHISD [6] 91.28± 1.79 90.77± 3.24 89.85± 2.16 90.79± 3.93 90.32± 1.62 89.54± 1.64 76.67± 7.69
CHISD [6] 93.62± 1.63 91.09± 1.78 90.56± 2.05 89.23± 4.32 86.69± 2.99 86.17± 2.49 75.81± 7.81
GEDA [7] 91.28± 5.82 88.21± 9.06 82.82± 6.05 83.25± 3.24 81.36± 3.53 80.37± 3.47 −
SANP [8] 95.13± 3.07 94.10± 3.21 91.90± 2.76 90.84± 4.65 89.61± 4.09 88.54± 3.84 54.87± 11.35
CDL [9] 98.97± 1.32 96.23± 1.24 93.90± 2.24 91.34± 2.53 89.31± 5.54 88.72± 4.84 5.13± 0.0
MSSRC [11] 97.95± 2.65 96.97± 1.32 94.35± 1.46 90.86± 4.15 91.82± 2.42 90.77± 2.49 72.8± 4.84
SSDML [12] 86.41± 3.64 84.36± 2.25 83.41± 1.73 84.69± 4.26 80.26± 3.59 80.21± 3.45 70.77± 10.05
RNP [10] 95.90± 2.16 92.33± 3.24 90.23± 3.26 89.34± 6.61 85.38± 2.02 84.81± 2.72 40.0± 7.37

DRM-MV 100.00± 0.0 99.23± 1.24 96.92± 2.91 94.87± 4.35 88.46± 6.42 83.94± 4.55 73.59± 7.55
DRM-WV 100.00± 0.0 100.0± 0.0 100.0± 0.0 98.20± 1.23 96.15± 3.25 85.33± 3.66 73.59± 7.55
DRM-PWV 100.00± 0.0 100.0± 0.0 100.0± 0.0 98.32± 1.14 96.26± 1.43 85.62± 3.12 73.59± 7.55

Average identification rates and standard deviations of different methods on Honda/UCSD dataset. Experiments are performed by considering different
sizes of the training and testing image sets. For example, 50− 25 means an experiment was performed by restricting an upper limit of 50 and 25
frames on the total number of images in the training and testing sets respectively. A “−” in the last column means that the respective method could
not be evaluated by using only one image in the testing set.

SSDML.

5.2 Results and Analysis

5.2.1 Honda/UCSD Dataset
The Honda/UCSD dataset [17] contains 59 video sequences
of 20 different subjects. The number of frames for each
video sequence varies from 12 to 645. For performance
evaluation and comparison with existing state of the art
methods, we perform experiments following the standard
evaluation configuration provided in [17]. Each video is
considered as an image set. 20 video sequences are used
for training and the remaining 39 sequences are used for
testing. In order to achieve a consistency in the results, we
run experiments 10 times for different random selections
of training and testing image sets.

The performance of different methods is evaluated by
reducing the size of the training and testing sets. Specifi-
cally, we set an upper limit Ntrain and Ntest on the total
number of images in the training and testing sets respec-
tively. Experiments are performed by considering Ntrain =
{All, 100, 50, 25} and Ntest = {All, 100, 50, 25, 15, 1}.
The experimental results for different combinations of the
training and the testing set lengths are presented in Table 1.
The Cumulative Match Characteristics (CMC) curves for
the top performing methods (for all frames of a video con-
sidered as an image set) are shown in Figure 3a. The results
suggest that the proposed method outperforms the other
methods and achieves the best average identification rates
for most of the configurations of the training and testing set
lengths. The results also show that the performance of all
methods degrades for a smaller number of images in a set.
Affine hull or convex hull based methods (AHISD, CHISD,
RNP, SANP) perform more consistently over different set
lengths. For the methods which represent an image set
either by a linear subspace or a combination of multiple
linear subspaces (MSM, DCC, MMD, MDA, GEDA), their
performance degrades gracefully with a reduced set length.
Our proposed method achieves perfect classification when

the number of images in a set is reduced to 50 images. Re-
ducing the total number of images to less than 50 degrades
the performance of our method. However, compared with
other methods, the proposed method is the least affected
by the reduced set size. The performance of the proposed
method degrades more for reduced training set size whereas
the effect of the reduced testing set size on the performance
is not very noticeable.

If the size of the testing image set is further reduced
to as low as one image, the performance of all methods
drops sharply and our proposed method achieves an average
identification rate of 73.59 ± 7.55%. Note that image set
classification methods are primarily developed for identi-
fication from very low resolution images (20 × 20 in this
case). Correct identification using a single image therefore
becomes very challenging and the presence of multiple
images in a set is required to complement each other’s
appearance.

5.2.2 CMU Mobo Dataset
The Mobo (Motion of Body) dataset [18] was originally
created for the pose identification of the human body.
The dataset contains a total of 96 sequences of 24 sub-
jects walking on a treadmill. For our experiments, we
randomly select one sequence of a subject for training and
the remaining three sequences are used for testing. The
experiments are repeated 10 times for different random
selections of the training and the testing sets. The average
identification rates of our proposed method along with a
comparison with other methods are provided in Table 2. The
CMC curves for different methods are shown in Fig. 3b.
The results show that the proposed method achieves the
highest average identification rate along with the lowest
standard deviation which suggests that the proposed method
is both accurate and reliable. Amongst the existing methods,
SANP, MSSRC and RNP show a comparable performance.
SANP achieves the highest rank 2 and rank 3 identification
rates. However, our method outperforms all methods for
rank 1 and rank 4-10 identification rates.
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TABLE 2: Performance Evaluation of All Methods on Different Datasets

Methods Mobo YTC Kinect PubFig YTF COX ETH
MSM FG’98 [15] 96.81± 1.97 50.21± 3.59 89.29± 4.11 56.95± 2.64 30.73± 3.24 26.38± 10.89 75.50± 4.83
DCC TPAMI’07 [3] 88.89± 2.45 51.42± 4.95 92.52± 2.00 34.90± 7.67 34.55± 1.70 43.30± 12.11 91.75± 3.74
MMD CVPR’08 [4] 92.50± 2.87 54.04± 3.69 93.90± 2.25 36.21± 6.86 36.65± 2.52 54.86± 10.25 77.50± 5.00
MDA CVPR’09 [5] 80.97± 12.28 55.11± 4.55 93.46± 3.57 34.25± 6.39 39.82± 2.83 73.05± 10.37 77.25± 5.46
AHISD CVPR’10 [6] 92.92± 2.12 61.49± 5.63 91.60± 2.18 62.05± 2.04 36.18± 1.49 64.10± 11.33 78.75± 5.30
CHISD CVPR’10 [6] 96.52± 1.18 60.42± 5.95 92.73± 1.91 64.81± 2.13 39.81± 2.51 63.13± 10.42 79.53± 5.32
GEDA CVPR’11 [7] 84.86± 3.24 52.48± 4.45 91.43± 6.28 35.45± 26.17 35.64± 3.49 53.15± 15.78 79.50± 5.24
SANP TPAMI’12 [8] 97.64± 0.94 65.60± 5.57 93.83± 3.12 80.41± 2.45 36.59± 5.62 66.23± 13.38 77.75± 7.31
CDL CVPR’12 [9] 90.00± 4.38 56.38± 5.31 94.59± 0.96 51.05± 3.98 36.00± 3.25 56.05± 16.31 77.75± 4.16
MSSRC CVPR’13 [11] 97.50± 0.88 59.36± 5.70 95.51± 2.30 85.55± 2.76 50.64± 2.23 69.40± 15.69 90.50± 3.07
SSDML ICCV’13 [12] 95.14± 2.20 66.24± 5.21 86.88± 3.39 88.80± 1.60 38.55± 2.85 65.33± 10.81 81.00± 6.58
RNP FG’13 [10] 96.11± 1.43 65.82± 5.39 96.23± 2.50 88.60± 0.99 34.55± 3.15 66.20± 12.83 81.00± 3.16

DRM-MV 97.92± 0.73 71.35± 4.83 98.11± 1.68 88.55± 1.45 46.91± 2.92 66.08± 14.69 98.12± 1.69
DRM-WV 98.15± 0.68 72.23± 4.79 98.26± 1.65 88.67± 1.54 48.42± 2.98 69.85± 12.93 98.25± 1.69
DRM-PWV 98.33± 0.65 72.55± 4.74 98.26± 1.65 89.90± 0.86 51.45± 3.06 66.45± 12.31 −

Experimental performance of different methods in terms of average identification rates and standard deviations on CMU/Mobo, YouTube Celebrities (YTC), Kinect, PubFig,
YouTube Faces (YTF), COX and ETH-80 datasets. The proposed method achieves the best performance on all datasets. The increase in performance is more significant for
YTC, ETH-80 and YTF datasets.

5.2.3 YouTube Celebrities Dataset

YouTube Celebrities (YTC) dataset [19] contains 1910
videos of 47 celebrities collected from YouTube. The
face images of the dataset exhibit a large diversity and
variations in the form of pose, illumination and expressions.
Moreover, the quality and resolution of the images is very
low due to the high compression rate. Since the face regions
in the videos are cropped by tracking [42], the low image
quality introduces many tracking errors and the region of
the cropped face is not uniform across frames of even the
same video.

For performance evaluation, we use five fold cross val-
idation experimental settings as followed in [4], [5], [8],
[9]. The complete dataset is equally divided into five folds
with 9 image sets per subject in each fold. Three of these
image sets are randomly selected for training, whereas the
remaining six sets are used for testing. Table 2 summarizes
the average identification rates and the standard deviations
of different methods. The CMC curves are shown in Fig. 3c.
It can be observed that the achieved identification rates
for all methods are low for this dataset compared with
the Honda/UCSD and Mobo dataset. This is owing to the
challenging nature of the dataset. The videos have been cap-
tured in real life scenarios and they exhibit a wide range of
appearance variations. The results suggest that our proposed
method significantly outperforms the existing methods and
achieves a relative performance improvement of 9.5% over
the second best method. Moreover, the proposed method
consistently achieves the best identification rates from rank
1 to 10. Note that the results of some methods e. g. [5],
[9] are relatively lower than as reported in their respective
papers because of our more challenging experimental setup,
large tracking errors in the automatically cropped faces
and the presence of faces under a wide range of appear-
ance variations. These methods only use the successfully
detected faces using [41]. We observe that face detection
by Viola and Jones [41] fails in a significant number of
frames (specially those with large head rotations and low
image quality). In our case, we extract faces from videos
by tracking [42]. Our experiments therefore include faces
under a wide range of variations.

5.2.4 Kinect Dataset

Face recognition from RGB-D data acquired by a Kinect
sensor is still in its infancy and only few works [20]
have addressed this problem. The method in [20] first
pre-processes Kinect depth images to produce a canonical
frontal view for faces with profile and non-frontal views.
The sparse representation based classification method of
[45] is then used for recognition. The method is evaluated
on CurtinFaces dataset and achieves a classification rate of
91.1% for RGB , 88.7% for D and 96.7% for fusion of
RGB-D data. The proposed method is single frame based
and does not make use of the plentitude of data which
can be instantly acquired from a Kinect sensor (30 frames
per second). Here, we formulate face recognition from
Kinect data as an RGB-D based image set classification
problem. Our formulation avoids expensive pre-processing
steps (such as hole filling, spike removal and canonical
view estimation; otherwise required for single image based
classification) and effectively makes use of the abundant
and readily available Kinect data.

The method in [20] is evaluated on CurtinFaces (a Kinect
RGB-D database of 52 subjects). For our image set clas-
sification experiments, we combine three Kinect datasets:
CurtinFaces [20], Biwi Kinect [21] and an in-house dataset
acquired at our laboratory at UWA. The number of subjects
in each of these datasets is 52 (5000 RGB-D images), 20
(15,000 RGB-D images) and 48 (15000 RGB-D images)
respectively. These datasets are combined into a single
dataset of 120 subjects. The images in the joint dataset
have a large range of variations in the form of changing
illumination conditions, head pose rotations, expression
deformations, sunglass disguise, and occlusions by hand.
For performance evaluation, RGB-D images of each subject
are randomly divided into five uniform folds. Considering
each fold as an image set, we select one set for training
and the remaining sets for testing. All experiments are
repeated five times for different selections of training and
testing sets. The results averaged over five iterations are
summarized in Table 2. The results show that the proposed
method achieves the highest identification rate (98.26%).
The existing methods show a good performance and the
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Fig. 4: Example images of a person from PubFig dataset.

achieved identification rates are 89.29% and higher. The
results suggest that image set classification proves to be
a better choice for Kinect based face recognition. The
achieved performance by image set classification methods
is better or comparable to single image based technique
(96.7%) of [20]. Moreover, the image set classification
techniques avoid computationally expensive pre-processing
steps. Note that compared with our experiments on a large
dataset of 120 subjects, the results reported for [20] are on
a small dataset of 52 subjects only.

5.2.5 Public Figures Face Database (PubFig)
PubFig [22] is a real-life dataset of 200 people collected
from the internet. The images of the dataset have been
acquired in uncontrolled situations without any user coop-
eration. The sample images of a subject in Fig. 4 show
large variations in the images caused by pose, lighting,
expressions, backgrounds and camera positions. For our
experiments, we divide equally the images of each subject
into three folds. Considering each fold as an image set,
we use one of them for training and the remaining two
are used for testing. Experiments are repeated five times
for different random selections of images of the training
and testing folds. The experimental results in Table 2
show that the proposed method achieves an average rank-
1 identification rate of 89.90 ± 0.86% and outperforms
all compared methods. The CMC curves in Fig 3g show
that the proposed method consistently achieves the best
identification rates over all ranks.

5.2.6 YouTube Faces Dataset

Fig. 5: Sample frames from videos of a person in the YTF
database.

YouTube Faces (YTF) dataset [23] contains real-life
videos of 1595 persons downloaded from YouTube. The
videos of the dataset have been acquired in unconstrained
environment and exhibit a wide range of appearance vari-
ations. Few sample images of a person from the dataset
are shown in Fig. 5. The YouTube faces database and
its evaluation protocol was originally developed for face
verification. In order to evaluate our method and the other

image set classification methods for the task of face iden-
tification, we select a subset of the dataset with four or
more videos per person. Considering each video as an
image set, we randomly choose three videos for training
and the remaining videos are used for testing. Experiments
are repeated five times for different random selections of
the training and testing videos. The identification rates
averaged over five iterations are reported in Table 2. The
results suggest that due to the challenging nature of this
dataset, the identification rates achieved by all methods are
lower compared to all the other evaluated datasets. Our
proposed method achieves an average identification rate of
51.45 ± 3.06%, which is superior to the other methods.
MSSRC [11] also achieves a very good identification rate
of 50.64±2.23% on this dataset. The achieved performance
by our method and MSSRC [11] is significantly better than
the other methods.

5.2.7 COX Dataset

Fig. 6: Example images of a person from COX dataset.

The COX [24] dataset contains 4000 uncontrolled low
resolution video sequences of 1000 subjects. The videos
have been captured inside a gymnasium with subjects
walking naturally and without any restriction on expression
and head orientation. The dataset contains four videos per
subject. The face resolution, head orientation and lighting
conditions in each video are significantly different from
the others. Sample images of a subject from this dataset
are shown in Fig. 6. For our experiments, we consider
images of each video as an image set and follow a leave-
one-out strategy. Specifically, one image set per subject is
used for testing whereas the remaining are used for training.
For consistency, four runs of experiments are performed by
swapping the training and testing image sets. The average
identification rates of all methods in Table 2 show that the
proposed method, MDA [5], MSSCR [11], SANP [8] and
RNP [10] achieve good performance on this dataset. The
CMC curves for the top performing methods in Fig 3f show
that MDA [5] achieves the best rank 1 − 3 identification
rates, whereas the proposed method outperforms others for
rank 4− 10 identification rates.

5.2.8 ETH-80 Dataset
ETH-80 contains images of eight object categories which
include apples, cars, cows, cups, dogs, horses, pears and
tomatoes. Each object category further includes ten sub-
categories such as different brands of cars or different
breeds of dogs. Each subcategory has images under 41
orientations. For performance evaluation, we follow an
experimental setup similar to [3], [5], [9]. Images of an
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TABLE 3: Equal Error Rates of different methods

Methods Honda Mobo YTC Kinect YTF COX PubFig
MSM [15] 7.58± 0.23 6.55± 1.61 23.90± 3.04 7.99± 0.28 38.93± 0.50 18.78± 4.73 19.01± 1.50
DCC [3] 6.18± 1.21 7.90± 1.14 21.68± 2.35 6.67± 1.30 31.45± 0.78 11.52± 3.98 31.34± 4.15
MMD [4] 5.20± 0.36 8.62± 2.15 20.53± 2.12 5.21± 0.45 32.28± 1.12 6.15± 0.85 31.25± 3.38
MDA [5] 5.60± 1.33 21.62± 9.9 19.26± 2.06 5.87± 1.39 33.72± 0.68 6.32± 0.90 36.96± 0.79
AHISD [6] 10.23± 0.09 9.90± 1.37 21.46± 2.14 9.27± 0.10 36.57± 0.75 8.99± 3.09 20.93± 0.67
CHISD [6] 8.62± 1.21 7.63± 1.25 21.23± 2.56 7.21± 0.4 34.31± 0.59 8.12± 2.91 19.15± 0.71
GEDA [7] 5.68± 1.35 8.68± 1.80 23.42± 3.51 6.08± 1.37 37.23± 0.77 19.51± 4.61 23.90± 1.29
SANP [8] 6.23± 1.21 4.11± 0.86 19.49± 2.44 6.73± 1.23 23.31± 3.12 10.25± 2.13 7.14± 0.59
CDL [9] 0.13± 0.16 3.91± 0.75 18.40± 2.04 2.17± 0.16 27.85± 0.83 8.31± 4.14 9.95± 0.93
MSSRC [11] 0.78± 0.67 1.44± 0.17 20.44± 2.43 4.25± 0.68 16.43± 1.65 5.76± 2.25 3.71± 0.21
SSDML [12] 17.71± 2.16 8.18± 3.25 17.34± 2.49 7.71± 2.22 37.57± 0.98 7.66± 3.18 12.05± 0.86
RNP [10] 12.50± 0.73 5.91± 0.73 24.55± 2.55 2.84± 0.82 37.59± 0.52 8.34± 1.86 10.79± 0.83
DRM-WV 0.00± 0.00 1.46± 0.51 11.68± 2.14 0.39± 0.04 15.29± 3.28 4.27± 3.32 2.80± 0.57

Comparison of methods for image set classification based face verification. The proposed DRMs based method achieves the lowest EER on
all datasets

object in a subcategory are considered as an image set.
For each object, five subcategories are selected for training
and the the remaining five are used for testing. 10 runs of
experiments are performed for different random selections
of the training and testing sets. The average identification
rates and standard deviations are presented in Table 2 and
CMC curves for different methods are given in Fig. 3h.
The proposed DRM based method achieves the highest
identification rate and achieves a significant improvement
over other methods.

5.3 Face Verification Experiments
We also present a comparison of different methods for
image set classification based face verification. The per-
formance is reported in terms of Equal Error Rate (EER),
a rate where false acceptance rate becomes equal to false
rejection rate. The average EER on face datasets for differ-
ent methods are summarized in Table 3. The results suggest
that the proposed method consistently achieves the lowest
EER for all datasets. Specifically, the difference with other
methods is more pronounced in case of YouTube Celebrities
dataset where the proposed DRM based method achieves
an EER of 11.68% compared to the second lowest error
rate of 17.34% by SSDML. For the YouTube Celebrities
datasets, we also present the Receiver Operating Char-
acteristic (ROC) curves in Fig. 3i for different methods.
The proposed method clearly outperforms the others by
producing the highest true positive rates against all false
positive rates.

5.4 Ablative Analysis
Here we present an ablative analysis in order to study the
effect of the different components on the overall perfor-
mance of the proposed method. Specifically, the following
aspects of the proposed framework are explored:

Effect of Template Initialization: We perform exper-
iments on the YouTube Celebrities dataset without ini-
tialization i. e. the class-specific DRMs are learnt from
a randomly initialized TDRM. The achieved performance
is 63.26 ± 4.10%, which is significantly lower than the
performance achieved by the class-specific DRMs learnt

from the initialized TDRM. This suggests that the template
initialization is an important element of our proposed
method.

Effect of Network Depth: Experiments are performed
by changing the depth of the network to 1024−400−1024
and 1024 − 400 − 100 − 40 − 100 − 400 − 1024. The
method achieves an identification rate of 66.67 ± 4.87%
and 72.58±4.20% respectively on the YouTube Celebrities
dataset. The results suggest that reducing the depth of
the network causes a significant performance degradation,
whereas the gain in performance due to an increased
network depth is very small. The selected network depth of
1024−400−100−400−1024 is therefore a good tradeoff
between computational complexity and performance.

Importance of Class-Specific Adaptation: We per-
formed experiments by omitting the class-specific adapta-
tion component of our method. Specifically, experiments
are performed by only considering the initialized encoder
part of the TDRM and adding a softmax layer of k
nodes (where k is the total number of classes) at the
end of the network. The achieved performance on the
YouTube Celebrities dataset is 68.74±6.75%. In addition to
its good performance, the class-specific adaptation makes
our method easily scalable. Specifically, since our method
learns a model for each class by using images of that class
only, enrolling a new class would not require retraining
on the complete training data. Instead, the class-specific
model for the newly added class can be learnt completely
independently by only using the images of that class.

5.5 Timing Analysis

A comparison of the computational complexity of all
methods on the benchmark ETH-80 dataset using a Core 2
Quad Machine is presented in Table 4. The training time
(in seconds) is given in Table 4 (a) while the time (in
seconds) required to identify an image set from the training
data is given in Table 4 (b). The proposed method requires
comparatively more time for training. The training however
is performed offline. The proposed method requires .026
seconds to identify an image set. This time is comparable
to the fastest methods (MSM, MDA, GEDA and RNP).
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(a) CMC Curves: Honda/UCSD
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(b) CMC Curves: CMU/Mobo
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(c) CMC Curves: YouTube Celebrities
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CMC curves for different methods on Kinect dataset
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(d) CMC Curves: Kinect
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CMC curves for different methods on PubFig dataset
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(e) CMC Curves: PubFig

1 2 3 4 5 6 7 8 9 10
55

60

65

70

75

80

85

90

Rank

Av
er

ag
e 

Id
en

tif
ic

at
io

n 
R

at
es

CMC curves for different methods on COX dataset

 

 

MDA
AHISD
SANP
CDL
SSDML
MSSRC
RNP
DRM

(f) CMC Curves: COX
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(g) CMC Curves: YouTube Faces
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(h) CMC Curves: ETH-80
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(i) ROC Curves: YouTube Celebrities

Fig. 3: Performance Curves for different methods on all datasets. The CMC curves (a-h) show that the proposed method
achieves the highest identification rates for all ranks on most of the dataset. The ROC curves for face verification
experiments on YTC dataset in (i) show that the proposed method significantly outperforms the others. Figure best seen
in colors.

The efficient testing is attributed to the fact that the pro-
posed method only requires a few matrix multiplications
(using Eqs 1 and 2) during testing. We note that the
methods which do not require any training and instead
directly compute a one-one set distance are very slow
during testing. These methods could be computationally
infeasible for larger gallery sizes. Unlike those methods, our
proposed DRMs based method is easily scalable. Enrolling
new classes would not require re-training on the complete
dataset. Instead the class specific models for the added
classes can be learnt independently of the existing classes.
Furthermore, the training time for the proposed method
does not increase with increased image resolution. Images
of different resolutions are pre-processed (see Sec. 4.2)
to fixed low dimensional input features and used by the
proposed DRMs based method.

6 CONCLUSION

In this paper, we have proposed a novel deep learning
framework for image set classification. Specifically, an
adaptive multi-layer neural network structure has been in-
troduced which is first pre-trained for appropriate parameter
initialization and then fine-tuned for learning class-specific
Deep Reconstruction Models (DRMs). By automatically
discovering the underlying non-linear complex geometric
surface, the DRMs can effectively model appearance vari-
ations within images of each class. The learnt DRMs are
then used for a minimum reconstruction error based clas-
sification strategy during testing. The proposed framework
has been extensively evaluated on a number of benchmark
video datasets, an RGB-D Kinect dataset and an object
dataset and state of the art performance has been achieved.

For future research, we plan to incorporate appropriate
modifications into the proposed method to make it further
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TABLE 4: Timing Analysis

Methods Time Methods Time Methods Time

MSM N/A DCC 13.36 MMD N/A

MDA 1.22 AHISD N/A CHISD N/A

GEDA 2.7 SANP N/A CDL 76.21

RNP N/A MSSRC N/A SSDML 21.92

DRM-MV 278.8 DRM-WV 278.8

(a) Training time (in seconds) for different methods. N/A means the
method does not require training. Although the proposed method
requires more time for training, it is easily scalable to new enrollments
and the training time is independent of the image resolution.

Methods Time Methods Time Methods Time

MSM .045 DCC .311 MMD 8.43

MDA .005 AHISD .095 CHISD .213

GEDA .068 SANP 105.7 CDL 1.40

RNP .027 MSSRC 4.78 SSDML .577

DRM-MV .026 DRM-WV .026

(b) Testing time (the time in seconds required to identify an image
set from the gallery) for different methods. The testing time for the
proposed method is comparable to the fastest methods.

robust to noisy image data, outliers and diverse within-set
data variations. We will also explore convolutional deep
reconstruction models for image set classification.
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