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A Spatial Layout and Scale Invariant Feature
Representation for Indoor Scene Classification

Munawar Hayat, Salman H. Khan, Mohammed Bennamoun and Senjian An

Abstract—Unlike standard object classification, where
the image to be classified contains one or multiple instances
of the same object, indoor scene classification is quite
different since the image consists of multiple distinct
objects. Further, these objects can be of varying sizes and
are present across numerous spatial locations in different
layouts. For automatic indoor scene categorization, large-
scale spatial layout deformations and scale variations are
therefore two major challenges and the design of rich
feature descriptors which are robust to these challenges
is still an open problem. This paper introduces a new
learnable feature descriptor called “spatial layout and
scale invariant convolutional activations” to deal with these
challenges. For this purpose, a new Convolutional Neural
Network architecture is designed which incorporates a
novel ‘Spatially Unstructured’ layer to introduce robust-
ness against spatial layout deformations. To achieve scale
invariance, we present a pyramidal image representation.
For feasible training of the proposed network for images
of indoor scenes, the paper proposes a methodology which
efficiently adapts a trained network model (on a large-scale
data) for our task with only a limited amount of available
training data. The efficacy of the proposed approach is
demonstrated through extensive experiments on a number
of datasets including MIT-67, Scene-15, Sports-8, Graz-02
and NYU datasets.

Index Terms—Indoor Scenes Classification, Spatial Lay-
out Variations, Scale Invariance

I. INTRODUCTION

Recognition/classification is an important computer
vision problem and has gained significant research atten-
tion over the last few decades. Most of the efforts, in this
regard, have been tailored towards generic object recog-
nition (which involves an image with one or multiple
instances of the same object) and face recognition (which
involves an image with the face region of the person).
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Unlike these classification tasks, indoor scene classifi-
cation is quite different since an image of an indoor
scene contains multiple distinct objects, with different
scales, sizes and laid across different spatial locations
in a number of possible layouts. Due to the challenging
nature of the problem, the state of the art performances
for scene classification are much lower (e.g., accuracies
of ∼ 50% on Places database [64] and ∼ 80% on
MIT-67 [4]) compared with other classification tasks
such as object classification (∼ 90% mAP on PASCAL
VOC-2012 [56] and ∼ 94% rank-5 identification rate
on ImageNet database [46]) and face recognition (e.g.,
human-level performance on real life datasets including
Labelled Faces in the Wild and YouTube Faces [50]).
This paper proposes a novel method of feature descrip-
tion, specifically tailored for indoor scene images, in
order to address the challenges of large-scale spatial
layout deformations and scale variations.

We can characterize some indoor scenes by only
global spatial information [33], [40], whereas for others,
local appearance information [6], [22], [29] is more
critical. For example, a corridor can be predominantly
characterized by a single large object (walls) whereas
a bedroom scene is characterized by multiple objects
(e.g., sofa, bed, table). Both global and local spatial
information must, therefore, be leveraged in order to
accommodate different scene types [39]. However, this is
very challenging, for two main reasons. First, the spatial
scale of the constituent objects varies significantly across
different scene types. Second, the constituent objects can
be present in different spatial locations and in a number
of possible layouts. This is illustrated in the example
images of the kitchen scene in Fig. 1, where a microwave
can be present in many different locations in the image
with significant variations in scale, pose and appearance.

This paper aims to achieve invariance with respect to
the spatial layout and the scale of the constituent objects
for indoor scene images. For this purpose, in order to
achieve invariance with respect to the spatial scale of
objects, we generate a pyramidal image representation
where an image is resized to different scales, and features
are computed across these scales (Sec III-C). To achieve
spatial layout invariance, we introduce a new method of
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Fig. 1: The spatial structure of indoor scenes is loose,
irregular and unpredictable which can confuse the classi-
fication system. As an example, a microwave in a kitchen
scene can be close to the sink, fridge, kitchen door or
top cupboards (green box in the images). Our objective
is to learn feature representations which are robust to
these variations by spatially shuffling the convolutional
activations (Sec. III).

feature description which is based on a proposed mod-
ified Convolutional Neural Network (CNN) architecture
(Sec. III-A).

CNNs preserve the global spatial layout in an image.
This is desirable for the classification tasks where an
image predominantly contains only a single object (e.g.,
objects in the ImageNet database [41]). However, for a
high-level vision task such as indoor scene classification,
an image may contain multiple distinct objects across
different spatial locations. We, therefore, want to devise
a method of feature description which is robust with
respect to the spatial layout of objects in a scene. Al-
though, the local pooling layers (max or mean pooling)
incorporated in standard CNN architectures do achieve
viewpoint and pose invariance to some extent [20].
Further, invariance with respect to fixed sizes of input
images can be achieved by employing a spatial pooling
layer after the last convolutional layer as in [12]. The
introduced pooling layer in [12] can generate a fixed
size output which is fed into the fully connected layer,
thus enabling the network to handle input images of
any dimensions. These pooling layers, however, cannot
accommodate large-scale deformations that are caused
by spatial layout variations in indoor scenes. In order
to achieve spatial layout invariance, this paper intro-
duces a modified CNN architecture with an additional
layer, termed ‘spatially unstructured layer’ (Sec. III-A).
The proposed CNN is then trained with images of
indoor scenes (using our proposed strategy described in
Sec. III-B) and the learned feature representations are
invariant to the spatial layout of the constituent objects.

Training a deep CNN requires a large amount of
data because the number of parameters to be learned
is quite huge. However, for many classification tasks,
we only have a limited amount of annotated training
data. This becomes then a serious limitation for the
feasible training of a deep CNN. Some recently proposed
techniques demonstrate that pre-trained CNN models
(on large datasets e.g., ImageNet) can be adapted for
similar tasks with limited additional training data [3].
However, cross-domain adaptation becomes problematic
in the case of heterogeneous tasks due to the different
natures of source and target datasets. For example, an
image in the ImageNet dataset contains mostly centred
objects belonging to only one class. In contrast, an image
in an indoor scene dataset has many constituent objects,
all appearing in a variety of layouts and scales. In this
work, we propose an efficient strategy to achieve cross-
domain adaptation with only a limited number of anno-
tated training images in the target dataset (Sec. III-B).
We note that the recently released Places database [64]
makes it feasible to train a large-scale CNN model for
the particular case of scene classification. Our proposed
approach is however quite generic and can be applied
to similar problems where cross-domain adaptation of
pre-trained deep CNN models is required. Specifically,
while [64] introduces a new large-scale scene dataset,
our approach makes it possible to perform training with
only a limited amount of annotated data.

The major contributions of this paper can be summa-
rized as: 1) A new method of feature description (using
the activations of a deep convolutional neural network)
is proposed to deal with the large-scale spatial layout de-
formations in scene images (Sec III-A), 2) A pyramidal
image representation is proposed to achieve scale invari-
ance (Sec III-C), 3) A novel transfer learning approach
is introduced to efficiently adapt a pre-trained network
model (on a large dataset) to any target classification
task with only a small amount of available annotated
training data (Sec III-B) and 4) Extensive experiments
are performed to validate the proposed approach. Our
results show a significant performance improvement for
the challenging indoor scene classification task on a
number of datasets.

II. RELATED WORK

Indoor scene classification has been actively re-
searched and a number of methods have been developed
in recent years [22], [36], [39], [40], [47], [48], [58].
While some of these methods focus on the holistic
properties of scene images (e.g., CENTRIST [58], Gist
descriptor [33]), others give more importance to the local
distinctive aspects (e.g., dense SIFT [22], HOG [59]).
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In this paper, we argue that we cannot rely on either
of the local or holistic image characteristics to describe
all indoor scene types [39]. For some scene types,
holistic or global image characteristics are enough (e.g.,
corridor), while for others, local image properties must
be considered (e.g., bedroom, shop). We therefore neither
focus on the global nor the local feature description and
instead extract mid-level image patches to encode an
intermediate level of information. Further, we propose a
pyramidal image representation which is able to capture
the discriminative aspects of indoor scenes at multiple
levels.

Recently, mid-level representations have emerged as
a competitive candidate for indoor scene classification.
Strategies have been devised to discover discriminative
mid-level image patches which are then encoded by a
feature descriptor. For example, the works [5], [16],
[48] learn to discover discriminative patches from the
training data. Our proposed method can also be cate-
gorized as a mid-level image patches based approach.
However, our method is different from the previous
methods, which require discriminative patch ranking and
selection procedures or involve the learning of distinc-
tive primitives. In contrast, our method achieves state
of the art performance by simply extracting mid-level
patches densely and uniformly from an image which
makes our approach more efficient (see more details in
Sec. III-D). Furthermore, similar to [46], we perform
a dense patch extraction at multiple scales to take into
consideration the contextual information of the scene at
a number of scales. We note that similar to [38], our
approach can also be used in conjunction with the patch
discovery methods to further improve the classification
performance (but at a relatively high computational cost).

An open problem in indoor scene classification is the
design of feature descriptors which are robust to global
layout deformations. The initial efforts to resolve this
problem used bag-of-visual-words models or variants
(e.g., [1], [22], [60]), which are based on locally invariant
descriptors e.g., SIFT [28]. Recently, these local fea-
ture representations have been outperformed by learned
feature representations from deep neural networks [11],
[17], [20], [40], [41]. However, since there is no inherent
mechanism in these deep networks to deal with the high
variability of indoor scenes, several recent efforts have
been made to fill in this gap (e.g., [9], [12]). The bag
of features approach of Gong et al. [9] performs VLAD
pooling [14] of CNN activations. Another example is
the combination of spatial pyramid matching and CNNs
(proposed by He et al. [12]) to increase the feature’s
robustness. These methods, however, devise feature rep-

resentations on top of CNN activations and do not inher-
ently equip the deep architectures to effectively deal with
the large deformations. In contrast, this work provides
an alternative strategy based on an improved network
architecture to enhance invariance towards large-scale
deformations. In this regard, our approach is close to the
recent work of Jaderberg et. al [13] which introduces
a differentiable feature transformer module in CNNs to
learn spatially invariant feature representations. The de-
tailed description of our proposed feature representation
method is presented next.

III. PROPOSED SPATIAL LAYOUT AND SCALE

INVARIANT CONVOLUTIONAL ACTIVATIONS - S2ICA

The block diagram of our proposed Spatial Layout and
Scale Invariant Convolutional Activations (S2ICA) based
feature description method is presented in Fig 2. The
detailed description of each of the blocks is given here.
We first present our baseline CNN architecture followed
by a detailed description of our spatially unstructured
layer in Sec. III-A. Note that the spatially unstructured
layer is introduced to achieve invariance to large-scale
spatial deformations, which are commonly encountered
in images of indoor scenes. The baseline CNN architec-
ture is pre-trained for a large-scale classification task. A
novel method is then proposed to adapt this pre-trained
network for the specific task of scene categorization
(Sec. III-B). Due to the data hungry nature of CNNs, it is
not feasible to train a deep architecture with only a lim-
ited amount of available training data. For this purpose,
we pre-train a ‘TransferNet’, which is then appended
with the initialized CNN and the whole network can then
be efficiently fine-tuned for the scene classification task.
Convolutional activations from this fine-tuned network
are then used for a robust feature representation of the
input images. To deal with the scale variations, we
propose a pyramidal image representation and combine
the activations from multiple levels which result in a
scale invariant feature representation (Sec. III-C). This
representation is then finally used by a linear Support
Vector Machine (SVM) for classification (Sec. III-D).

A. CNN Architecture

Our baseline CNN architecture is presented in Fig 4.
It consists of five convolutional layers and four fully
connected layers. The architecture of our baseline CNN
is similar to AlexNet [20]. The main difference is that
we introduce an extra fully connected layer, and that
all of our neighbouring layers are densely connected
(in contrast to the sparse connections in AlexNet). To
achieve spatial layout invariance, the architecture of
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Fig. 2: Overview of the proposed Spatial Layout and Scale Invariant Convolutional Activations (S2ICA) based
feature description method. Mid-level patches are extracted from three levels (A, B, C) of the pyramidal image
representation. The extracted patches are separately feed-forwarded to the two trained CNNs (with and without
the spatially unstructured layer). The convolutional activations based feature representation of the patches is then
pooled and a single feature vector for the image is finally generated by concatenating the feature vectors from both
CNNs. Figure best seen in colour

the baseline CNN is modified and a new unstructured
layer is added after the first sub-sampling layer. A brief
description of each layer of the network follows next.

Let us suppose that the convolutional neural network
consists of L hidden layers and each layer is indexed by
l ∈ {1 . . . L}. The feed-forward pass can be described
as a sequence of convolution, optional sub-sampling and
normalization operations. The response of each convo-
lution node in layer l is given by:

aln = f

(∑
m

(al−1m ∗ klm,n) + bln

)
, (1)

where k and b denote the learned kernel and bias, the
indices (m,n) indicate that the mapping is from the mth

feature map of the previous layer to the nth feature map
of the current layer. The function f is the element-wise
Rectified Linear Unit (ReLU) activation function [32].
The response of each normalization layer is given by:

aln =
al−1n(

α+ β
min(N−1,n+σ)∑
j=max(0,n−σ)

(al−1j )2

)γ , (2)

where α, β, γ, σ1 are constants and N is the total number
of kernels in the layer. The response of each sub-
sampling node is given by:

aln(i,j) = max
0≤{i′,j′}≤T−1

al−1n(i+i′,j+j′), (3)

1These constants are defined as in [20]: α = 2, β = 10−4, γ = 3/4
and σ = 5/2.

where, {i, i′, j, j′} are the input and output indexes and
T is the neighbourhood size over which the values are
pooled.

In our proposed modified CNN architecture, a spa-
tially unstructured layer follows the first sub-sampling
layer and breaks the spatial order of the output feature
maps. This helps in the generation of robust feature
representations that can cope with the high variability of
indoor scenes. Algorithmic description of the operations
performed by the spatially unstructured layer is presented
in Algorithm 1. For each feature response, we split the
feature map into a specified number of blocks (b). Next,
a matrix U is constructed whose elements correspond to
the scope of each block defined as a tuple:

U√b×
√
b = {ui ∀i |ui = (p, q)}, (4)

where, p and q indicate the starting and ending index
of each block. To perform a local swapping operation,
we define a matrix S in terms of an identity matrix I as
follows:

S2×2 = |I − 1| =
(

0 1
1 0

)
(5)

Next, a transformation matrix T ∈ R
√
b×
√
b is defined in

terms of S as follows:

T√b×
√
b =


S 0 . . . 0
0 S . . . 0
...

...
. . .

...
0 0 . . . S


√
b/2×

√
b/2

(6)

The transformation matrix T has the following proper-
ties:
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Algorithm 1 Operations Involved in the Spatially Unstructured Layer

Input: Feature map, F ∈ Rp×q×r×s, Number of Blocks : N
Output: Modified feature map (Fm)
` =

⌊√
N
2

⌋
// Rearrangement level

hpts ← (`+ 1) linearly spaced points in range [1 : p]
hpts[end] + = 1
wpts = hpts // ∵ p = q for F
for ∀i ∈ [1 : length(hpts)− 1] do

for ∀j ∈ [1 : length(wpts)− 1] do
Ftmp = F[hpts(i) : hpts(i+ 1)− 1, wpts(j) : wpts(j + 1)− 1, :, :]

Ftmp = [Ftmp(
⌈
rows(Ftmp)

2

⌉
: end, :, :, :);Ftmp(1 :

⌊
rows(Ftmp)

2

⌋
, :, :, :)]

Ftmp = [Ftmp(:,
⌈
cols(Ftmp)

2

⌉
: end, :, :);Ftmp(:, 1 :

⌊
cols(Ftmp)

2

⌋
, :, :)]

Fm[hpts(i) : hpts(i+ 1)− 1, wpts(j) : wpts(j + 1)− 1, :, :] = Ftmp
return {R}

• T = {tij} is a permutation matrix (T : {uij} →
{uij}) since the sum along each row and column
is always equal to one i.e. ,

∑
i
tij =

∑
j
tij = 1.

• T is a bi-stochastic matrix and therefore according
to Birkhoffvon Neumann theorem and the above
property, T lies on the convex hull of the set of
bi-stochastic matrices.

• It is a binary matrix with entries belonging to the
Boolean domain {0, 1}.

• It is an orthogonal matrix, therefore, TTT = I and
T−1 = TT .

Using the matrix T, we transform U to become:

Û = (UTT)TT = TTUT. (7)

The updated matrix Û contains the new indices of the
modified feature maps. If Y(·) is a function which reads
the indices of the blocks stored in the form of tuples in
matrix Û, the layer outputs are as follows:

aln = r ∗ Y(al−1n , Û), (8)

where, r ∼ Bernoulli(ρ). (9)

r is a random variable which has a probability ρ of being
equal to 1. Note that this shuffling operation is applied
randomly so that a network does not get biased towards
the normal patches. Fig. 3 illustrates the distortion oper-
ations performed by the spatially unstructured layer for
a varying number of blocks.

B. Training CNNs for Indoor Scenes
Deep CNNs have demonstrated exceptional feature

representation capabilities for the classification and de-
tection tasks (e.g., see ILSVRC’14 Results [41]). Train-
ing deep CNNs however requires a large amount of data

Fig. 3: (left to right) Original image and the spatially
unstructured versions with 216, 214 and 22 blocks re-
spectively.

since the number of parameters to be learned is huge.
The requirement of a large amount of training data makes
the training of CNNs infeasible where only a limited
amount of annotated training data is available. In this
paper, we propose to leverage from the image represen-
tations learned on a large-scale classification task (such
as on ImageNet [41]) and propose a strategy to learn
tailored feature representations for indoor scene catego-
rization. In this manner, our approach performs cross-
domain feature adaptation by transforming the object-
centric features to scene-centric feature representations.
An algorithmic description of our proposed strategy is
summarized in Algorithm. 2. The details are presented
here.

We first train our baseline CNN architecture on Im-
ageNet database following the procedure in [20]. Next,
we densely extract mid-level image patches from our
scene classification training data and represent them in
terms of the convolutional activations of the trained
baseline network. The output of the last convolution
layer followed by ReLU non-linearity is considered as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2016.2599292

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

Fig. 4: The architecture of our proposed Convolutional Neural Network used to learn tailored feature representations
for scene categorization. We devise a strategy (see Sec. III-B and Alg. 2) to effectively adapt the learned feature
representation from a large-scale classification task to scene categorization.

a feature representation of the extracted patches. These
feature representations (F) will be used to train our
TransferNet.

Algorithm 2 Training CNNs for indoor scenes
Input: Source DB (ImageNet), Target DB (Scene Im-

ages)
Output: Learned weights: {W}1×L, {Wsu}1×L

1: Pre-train the CNN on the large-scale source DB.
2: Feed-forward image patches from target DB to

trained CNN.
3: Take feature representations (F) from the last con-

volution layer.
4: Train the ‘TransferNet’ consisting of four fully con-

nected layers with F as input and target annotations
as output.

5: Append ‘TransferNet’ to the last convolution layer
of trained CNN.

6: Fine-tune the complete network with and without
the spatially unstructured layer to get {W}1×L and
{Wsu}1×L respectively.

As depicted in Fig 4, our TransferNet consists of
three hidden layers (with 4096 neurons each) and an
output layer, whose number of neurons are equal to
the number of classes in the target dataset (e.g., indoor
scenes dataset). TransferNet is trained on convolutional
feature representations (F) of mid-level patches of the
scene classification dataset. Specifically, the input to
TransferNet are the feature representations (F) of the
patches and the outputs are their corresponding class
labels. After training TransferNet, we remove all fully
connected layers of the baseline CNN and join the
trained TransferNet to the last convolutional layer of the

baseline CNN. The resulting network then consists of
five convolutional layers and four fully connected layers
(of the trained TransferNet). This complete network is
now fine-tuned on the patches extracted from the training
images of the scene classification data. Since the network
initialization is quite good (the convolutional layers of
the network are initialized from the baseline network
trained on ImageNet dataset, whereas the fully connected
layers are initialized from the trained transferNet), only
few epochs are required for the network to converge.
Moreover, with a good initialization, it becomes feasible
to learn deep CNN’s parameters even with a smaller
number of available training images.

Our proposed fine-tuning strategy is similar to [8],
[35] in which a lower learning rate (zero or close to
zero) is used for the convolutional part of the network
(thus essentially freezing this part) and a higher learning
rate is used for the fully connected part. Adapting
the fine tuning strategy of [8], [35] will yield similar
tuned parameters. However, a major advantage of our
proposed technique is that it does not need to compute
the activations for the convolutional part of the network
in every feed forward pass during the training phase.
Instead, these are computed only once at the beginning,
which makes our proposed technique computationally
efficient.

Note that the baseline CNN was trained with images
from the ImageNet database, where each image pre-
dominantly contains one or multiple instances of the
same object. In the case of scene categorization, we deal
with a large number of object categories, where each cat-
egory may appear in a variety of poses, appearances and
scales at different spatial locations in a scene. Therefore,
in order to incorporate large-scale deformations, we train
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two CNNs: with and without the spatially unstructured
layer (learned weights represented by W and Wsu

respectively). These trained CNNs are then used for the
proposed feature representation in Sec. III-D. Below,
we first explain our approach to deal with large-scale
variations in object size.

C. Pyramid Image Representation

In order to achieve scale invariance, we generate a
pyramid of an image at multiple spatial resolutions.
However, unlike conventional pyramid generation pro-
cesses (e.g., Gaussian or Laplacian pyramid) where
smoothing and sub-sampling operations are repeatedly
applied, we simply resize each image to a set of
scales and this may involve up or down sampling.
Specifically, we transform each image to three scales,
{0.75D,D, 1.25D}, where D is the smaller dimension
of an image which is set based on the given dataset. At
each scale, we densely extract patches which are then
encoded in terms of the convolutional activations of the
trained CNNs.

D. Image Representation and Classification

From each of the three images of the pyramidal
image representation, we extract multiple overlapping
patches of 224 × 224 using a sliding window. A shift
of 32 pixels is used between patches. The extracted
image patches are then feed forwarded to the trained
CNNs (both with and without the spatially unstructured
layer). The convolutional feature representation of the
patches are max-pooled to get a single feature vector
representation for the image. This is denoted by A, B and
C corresponding to three images of the pyramid in Fig 2.
We then max pool the feature representations of these
images and generate one single representation of the
image for each network (with and without the spatially
unstructured layer). The final feature representation is
achieved by concatenating these two feature vectors.
After encoding the spatial layout and the scale invariant
feature representations for the images, the next step is to
perform classification. We use a simple linear Support
Vector Machine (SVM) classifier for this purpose.

IV. EXPERIMENTS AND EVALUATION

The proposed approach is validated through extensive
experiments on a number of datasets. To this end, we per-
form experiments on three indoor scene datasets (MIT-
67, NYU and Scene-15). Amongst these datasets, MIT-
67 is the largest dataset for indoor scene classification.
The dataset is quite challenging since images of many

classes are similar in appearance and thus hard to classify
(see Fig. 9). Apart from indoor scene classification,
we further validate our approach on two other tasks
i.e., event and object datasets (Graz-02 and Sports-8).
For each scene dataset, we set the hyper-parameters
(including p, n, the learning rates and the number of
training epochs) via cross-validation on a small held-out
validation set. In Sec. IV-A below, we first present a
brief description about each of the datasets and adopted
experimental protocols. We then present our experimen-
tal results along with a comparison with existing state
of the art and baseline approaches in Sec. IV-B and
Sec. IV-C, respectively. An ablative analysis to study
the individual effect of each component on the proposed
method is also presented in Sec. IV-E.

A. Datasets

The MIT-67 Dataset contains a total of 15620 images of
67 indoor scene classes. For our experiments, we follow
the standard evaluation protocol in [39]. Specifically, 100
images per class are considered, out of which 80 are used
for training and the remaining 20 are used for testing.
We therefore have a total of 5360 and 1340 images for
training and testing respectively.
The 15 Category Scene Dataset contains images of 15
urban and natural scene classes. The number of images
for each scene class in the dataset ranges from 200-
400. For performance evaluation and comparison with
existing state of the art, we follow the standard evaluation
protocol in [22], where 100 images per class are selected
for training and the rest are used for testing.
The NYU v1 Indoor Scene Dataset contains a total of
2347 images belonging to 7 indoor scene categories. We
follow the evaluation protocol described in [45] and use
the first 60% of the images of each class for training and
the last 40% images for testing.
The Inria Graz 02 Dataset contains a total of 1096
images of three classes (bikes, cars and people). The
images of this dataset exhibit a wide range of appearance
variations in the form of heavy clutter, occlusions and
pose changes. The evaluation protocol defined in [30] is
used in our experiments. Specifically, the training and
testing splits are generated by considering the first 150
odd images for training and the first 150 even images
for testing.
The UIUC Sports Event Dataset contains 1574 images
of 8 sports event categories. Following the protocol
defined in [23], we used 70 and 60 randomly sampled
images per category for training and testing respectively.
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Fig. 5: Confusion Matrix for the MIT-67 Indoor Scenes Dataset. Figure best seen in color.

Fig. 6: Confusion matrices for Scene-15, Sports-8 and NYU scene classification datasets. Figure best seen in color.

B. Results and Analysis

The quantitative results of the proposed method in
terms of classification rates for the task of indoor scene
categorization are presented in Tables I, III and V. A
comparison with other techniques shows that the pro-
posed method consistently achieves a superior or at least
competitive performance compared to the existing state
of the art. On MIT-67 dataset, only one recent method
by Cimpoi et. al [4] performs better than our proposed
approach. However, it is important to note that [4] uses
fisher vector (FV) encoding which uses high computa-

tional resources and generates high dimensional features
(∼ 70k compared to our ∼ 4k dimensional feature vec-
tor). Moreover, several recent approaches [4], [9], [18]
have demonstrated that feature encoding methods, when
used in conjunction with CNN activations, can further
improve the classification performance. Therefore, our
proposed approach can easily be extended to work with
feature encoding methods to maximize its performance
gain.

We also evaluate the proposed method for the tasks
of sports events and highly occluded object classification
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MIT-67 Indoor Scenes Dataset

Method Accuracy(%) Method Accuracy (%)

ROI + GIST [CVPR’09] [39] 26.1 ISPR [CVPR’14] [27] 50.1
MM-Scene [NIPS’10] [65] 28.3 D-Parts [ICCV’13] [48] 51.4
SPM [CVPR’06] [22] 34.4 VC + VQ [CVPR’13] [26] 52.3
Object Bank [NIPS’10] [24] 37.6 IFV [CVPR’13] [16] 60.8
RBoW [CVPR’12] [37] 37.9 MLRep [NIPS’13] [5] 64.0
Weakly Supervised DPM [ICCV’11] [36] 43.1 CNN-MOP [ECCV’14] [9] 68.9
SPMSM [ECCV’12] [21] 44.0 CNNaug-SVM [CVPRw’14] [40] 69.0
LPR-LIN [ECCV’12] [42] 44.8 Places-CNN [NIPS’14] [64] 70.8
BoP [CVPR’13] [16] 46.1 Deep Filter Banks [IJCV’16] [4] 80.3
Hybrid Parts + GIST + SP [ECCV’12] [63] 47.2

OTC [ECCV’14] [29] 47.3 Proposed S2ICA 71.2
Discriminative Patches [ECCV’12] [47] 49.4 S2ICA (with VGG-16) 74.4

TABLE I: Mean accuracy on the MIT-67 indoor scenes dataset.

(Tables II and IV). The results show that the proposed
method achieves very high classification rates compared
to existing methods on these datasets. The overall exper-
imental results suggest that the gain in performance of
our method is more significant and pronounced for the
Scene-15, Graz-02 and Sports-8 datasets. The confusion
matrices showing the class-wise accuracies of Scene-
15, Sports-8 and NYU datasets are presented in Fig. 6.
The confusion matrix for the MIT-67 scene dataset is
given in Fig. 5. It can be noted that all the confusion
matrices have a very strong diagonal (Fig. 5 and 6). The
majority of the confused testing samples belong to very
closely related classes e.g., living room is confused with
bedroom, office with computer-room, coast with open-
country and croquet with bocce.

The superior performance of our method is attributed
to its ability to handle large spatial layout and scale
variations through the introduction of the spatially un-
structured layer and the proposed pyramidal image rep-
resentation. Further, our method is based on deep con-
volutional representations, which have recently shown to
be superior in performance over shallow or handcrafted
feature representations [12], [40], [41]. A number of
compared methods are based upon mid-level feature
representations (e.g., [5], [16], [48]). Our results show
that our proposed method achieves superior performance
over these methods. It should be noted that in contrast to
existing mid-level feature representation based methods
(whose main focus is on the automatic discovery of
discriminative mid-level patches) our method simply
densely extracts mid-level patches from uniform loca-
tions across an image. This is computationally very
efficient since we do not need to devise patch selection
and sorting strategies. Further, our dense patch extraction
is similar to dense keypoint extraction, which has shown
a comparable performance with sophisticated keypoint

UIUC Sports-8 Dataset

Method Accuracy (%)

GIST-color [IJCV’01] [33] 70.7
MM-Scene [NIPS’10] [65] 71.7
Graphical Model [ICCV’07] [23] 73.4
Object Bank [NIPS’10] [24] 76.3
Object Attributes [ECCV’12] [25] 77.9
CENTRIST [PAMI’11] [58] 78.2
RSP [ECCV’12] [15] 79.6
SPM [CVPR’06] [22] 81.8
SPMSM [ECCV’12] [21] 83.0
Classemes [ECCV’10] [52] 84.2
HIK [ICCV’09] [57] 84.2
LScSPM [CVPR’10] [7] 85.3
LPR-RBF [ECCV’12] [42] 86.2
Hybrid Parts + GIST + SP [ECCV’12] [63] 87.2
LCSR [CVPR’12] [44] 87.2
VC + VQ [CVPR’13] [26] 88.4
IFV [55] 90.8
ISPR [CVPR’14] [27] 89.5
Places-CNN [NIPS’14] [64] 94.2

Proposed S2ICA 95.8

TABLE II: Mean accuracy on the UIUC Sports-8 dataset.

extraction methods over a number of classification tasks
[10].

Visualisation: The contributions of the extracted mid-
level patches towards a correct classification are shown
in the form of heat maps for some example images in
Fig 8. It can be seen that our proposed spatial layout and
scale invariant convolutional activations based feature
descriptor gives automatically more importance to the
meaningful and information rich parts of an image.

We also study the discriminative capabilities of our
proposed features by visualizing them in the original
image space. For this purpose, we first embed our feature
descriptors into a low dimensional 2-D space using t-
SNE [54]. The embedding is done such that the original
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NYU Indoor Scenes Dataset

Method Accuracy (%)

BoW-SIFT [ICCVw’11] [45] 55.2
RGB-LLC [TC’13] [51] 78.1
RGB-LLC-RPSL [TC’13] [51] 79.5

Proposed S2ICA 81.2
S2ICA (with Places-205) 81.4

TABLE III: Mean accuracy for the NYU v1 dataset.

Graz-02 Dataset

Cars People Bikes Overall

OLB [SCIA’05] [34] 70.7 81.0 76.5 76.1
VQ [ICCV’07] [53] 80.2 85.2 89.5 85.0
ERC-F [PAMI’08] [31] 79.9 - 84.4 82.1
TSD-IB [BMVC’11] [19] 87.5 85.3 91.2 88.0
TSD-k [BMVC’11] [19] 84.8 87.3 90.7 87.6

Proposed S2ICA 98.7 97.7 97.7 98.0

TABLE IV: Equal Error Rates (EER) on Graz-02 dataset.
All performances are reported in percentages (%).

pair-wise distances are preserved. The embedded feature
descriptors in the 2-D space can then be visualized by
plotting their corresponding images onto a rectangular
grid. The results presented in Fig. 7 show that similar
looking images lie close to each others in our proposed
feature space, which is desirable for correct classifica-
tion.

Ambiguous Cases: The actual and predicted labels
of some miss-classified images from MIT-67 dataset are
shown in Fig 9. Note the extremely challenging nature of
the images in the presence of high inter-class similarities.
Some of the classes are very challenging and there is no
visual indication to determine the actual label. It can
be seen that the miss-classified images belong to highly
confusing and very similar looking scene types. For
example, the image of inside subway is miss-classified
as inside bus, library as bookstore, movie theatre as
auditorium and office as classroom.

C. Baseline Comparisons

We attribute the superior performance of our proposed
method to the following reasons: (a) its ability to handle
large scale spatial layout deformations in indoor scene
images (b) its ability to extract and encode information
at multiple spatial levels, and (c) it provides a distinctive
task specific feature representation in terms of activations
of the CNN models with fine tuned fully connected parts.
In order to demonstrate the effectiveness of our proposed
approach to achieve large scale spatial layout and scale

Fig. 8: The contributions (red: most; blue: least) of mid-
level patches towards correct class prediction. Best seen
in color.

invariance, we conduct a performance comparison with
several baseline methods. In this regard, we first consider
standard pooling strategies in CNN models as a baseline
to achieve translation invariance. We then consider ac-
tivations from different layers of the CNN model as a
baseline for feature encoding at different spatial levels.
These baseline evaluations are discussed next.

i) Pooling for Spatial Layout Invariance: In standard
CNN models, the pooling layers are quite effective and
achieve a moderate level of invariance with respect to
image transformations. Mean-pooling and max-pooling
are the two most commonly used pooling strategies.
Existing literature (e.g., [43]) shows that, depending on
the nature of the data, either of them can achieve better
performance. Yu et. al [61] showed that a mixed pooling
strategy, which stochastically determines the pooling
type during the training of the network (instead of a
pre-defined pooling type), achieves the best performance.
In this baseline experiment, we study the effectiveness
of different pooling strategies to achieve invariance with
respect to image transformations for the task of indoor
scene categorization. For this purpose, we first separately
consider the activations of two CNN models (which
respectively deploy max and mean pooling) as feature
representation of the input image. We then concatenate
these activations from both CNN models and consider
the resulting vector as a feature representation. Our
experimental results on MIT-67 dataset (Table VI) show
that the joint feature representation from the two CNNs
(one with max-pooling and the other with mean-pooling)
does achieve a performance gain over the representation
from either of these two models. However, in comparison
to the different pooling strategies, our proposed strategy
to achieve invariance with respect to spatial layout de-
formations (by combining complementary feature repre-
sentations from the structured and unstructured CNNs)
shows a significantly superior performance.

ii) Multi Layered Activations for Scale Invariance:
Different layers of CNN capture different levels of in-
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Fig. 7: Visualization of proposed feature representations in image space. Example images are shown from MIT-67
dataset, (a) shows examples of test images, (b) shows examples of training images. Note that images belonging to
the same classes lie close to each others, demonstrating that the original inter-image distances are preserved in our
proposed feature space. (Figure best seen when enlarged)

(a) (b)

Actual: Airport Inside, Pred: Lobby

Actual: Airport Inside, Pred: Prison Cell Actual: Airport Inside, Pred: AuditoriumActual: Gameroom, Pred: Pool Inside Actual: Inside Subway, Pred: Inside Bus Actual: Kindergarten, Pred: Gameroom

Actual: Library, Pred: BookstoreActual: Livingroom, Pred: WaitingroomActual: Mall, Pred: Airport InsideActual: Movie theatre, Pred: Auditorium

Actual: Museum, Pred: Train station

Actual: Office, Pred: Classroom

Fig. 9: Some examples of misclassified images from MIT-67 indoor scenes dataset. Actual and predicted labels of
each image are given. Images from highly similar looking classes are confused amongst each other. For example,
the proposed method misclassifies library as bookstore, office as classroom and inside subway as inside bus.

formation. The initial layers capture low level local geo-
metric information while the (deeper) final layers capture
more of the high level holistic global information. A
possible way to simultaneously encode information at
different spatial levels (local as well as global) is to
combine the activations extracted from the different
layers of the network. In this baseline experiment, we
first individually consider activations of different layers
of the CNN model as a feature representation of the

input image. We then consider a joint concatenated
feature representation from these layers. Our experi-
mental results on MIT-67 datasaet (presented in Table
VII) show that the best performance is achieved by
combining information from the last convolution layer
and the first fully connected layer. This performance,
however, is quite comparable to the one achieved by
using the activations of only the first fully connected
layer as a feature representation. This is because the
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15 Category Scene Dataset

Method Accuracy(%) Method Accuracy (%)

GIST-color [IJCV’01] [33] 69.5 ISPR [CVPR’14] [27] 85.1
Reconfigurable BoW [CVPR’12] [37] 78.6 VC + VQ [CVPR’13] [26] 85.4
Classemes [ECCV’10] [52] 80.6 LMLF [CVPR’10] [2] 85.6
Object Bank [NIPS’10] [24] 80.9 LPR-RBF [ECCV’12] [42] 85.8
SPM [CVPR’06] [22] 81.4 Hybrid Parts + GIST + SP [ECCV’12] [63] 86.3
SPMSM [ECCV’12] [21] 82.3 CENTRIST+LCC+Boosting [CVPR’11] [62] 87.8
LCSR [CVPR’12] [44] 82.7 RSP [ECCV’12] [15] 88.1
SP-pLSA [PAMI’08] [1] 83.7 IFV [55] 89.2
CENTRIST [PAMI’11] [58] 83.9 LScSPM [CVPR’10] [7] 89.7
HIK [ICCV’09] [57] 84.1 Places-CNN [NIPS’14] [64] 91.6

OTC [ECCV’14] [29] 84.4 Proposed S2ICA 93.1
S2ICA (with Places-205) 92.6

TABLE V: Mean accuracy on the 15 Category scene dataset. Comparisons with the previous best techniques are
also shown.

TABLE VI: Baseline performance evaluation of different
pooling strategies on MIT-67 dataset.

Method Accuracy (%)

Max Pooling 65.4
Mean Pooling 62.9
Max + Mean Pooling 66.5

Our Approach 71.2

fully connected part of the network has learned more
distinctive and discriminative representations since its
parameters have been adapted with respect to the specific
task of indoor scenes.

TABLE VII: Performance evaluation in terms of activa-
tions of the different layers of the network as a feature
representation of the input image.

Features Accuracy (%)

Last Convolution Layer 60.2
2nd Last Convolution Layer 57.8
Last + 2nd Last Convolution Layer 60.9
First Fully Connected Layer 65.4
First Fully Connected + Last Convolution Layer 65.6

D. Evaluation of Baseline CNN Models

In this section, we evaluate our proposed strategies
in conjunction with a range of state-of-the-art baseline
CNN models. In particular, we use the VGG-16 [46],
GoogleNet [49], Places-205 [64] and Places-205 Hy-
brid [64] models. All of these standard models have
demonstrated excellent performances on large-scale clas-
sification tasks on ImageNet and Places databases. Our
experimental results on MIT-67 dataset are presented

in Table VIII. The results show that a consistent per-
formance boost is achieved over the baseline models
when our proposed strategies are used to achieve spatial
layout and scale invariance. We note that our approach
achieves a higher performance gain on CNN models
which are pre-trained on object-centric datasets (e.g.,
VGG-16 and GoogleNet trained on ImageNet). This
demonstrates its ability to adapt the object-centric feature
representations that are suitable for scene-centric tasks
(indoor scene classification in our case). For the case
of CNN models pre-trained on scene-centric datasets
(e.g., Places-205), our approach achieves a relatively
lower boost in performance. This can be attributed to
the fact that a network trained on 2.5 million scene
images (or 3.5 million for the Hybrid dataset) has already
seen a large number of spatial layouts with different
configurations of constituent object categories [64].

TABLE VIII: Evaluation our approach in combination
with different CNN Models on the MIT-67 Dataset. All
performances are reported in percentages (%).

CNN Model Standard Model Our Method

VGG-16 [46] 68.1 74.4
GoogleNet [49] 65.4 73.1
Places-205 [64] 68.2 70.2
Places-205 Hybrid [64] 70.2 71.5

We evaluate our proposed approach to achieve spatial
layout and scale invariance on Places 2015 dataset [64].
In this regards, we consider the Places-205 CNN model
and refine its parameters by incorporating the proposed
spatially unstructured layer. We achieve a classification
accuracy of 51.3% compared to an accuracy of 50.0%
achieved with their baseline model. This validates the
efficacy of our proposed strategies to achieve spatial
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layout and scale invariance on a large scale dataset.

E. Ablative Analysis

An ablative analysis to assess the effect of each indi-
vidual component of the proposed technique towards the
overall performance is presented in Table X. Specifically,
the contributions of the proposed spatially unstructured
layer, pyramid image representation, training of the CNN
on the target dataset and pooling (mean pooling and max
pooling) are investigated. In order to investigate a spe-
cific component of the proposed method, we only modify
(add or remove) that part, while the rest of the pipeline is
kept fixed. The experimental results in Table X show that
the combination of feature representations from CNNs
trained with and without the spatially unstructured layer
achieve the best performance. Furthermore, the proposed
pyramidal image representation also contributes signif-
icantly towards the performance improvement of the
proposed method. Our proposed strategy to adapt a deep
CNN (trained on a large-scale classification task) for
scene categorization also proves to be very effective
and it results in a significant performance improvement.
Amongst the pooling strategies, max pooling provides a
superior performance compared with mean pooling.

It is interesting to note that the spatially unstructured
layer disturbs the spatial structure of a scene and it
helps to achieve invariance with respect to large scale
spatial layout deformations. In some cases, it is not
desirable to loose the spatial structure altogether (e.g.,
a gallery scene with only a few object classes such as
walls, floor and ceiling). While for some other cases,
it is desirable to disturb the overall scene structure and
train the network to deal with large deformations (e.g.,
an indoor kitchen scene with hundreds of objects and
cluttered regions). The combination of information from
the two CNN models (structured CNN and unstructured
CNN) therefore complement each other and achieves the
best performance (71.2% compared to 65.4% and 65.9%
of the baseline and modified CNNs respectively).

In our pyramid image representation, an image is
rescaled to {0.75D,D, 1.25D} to extract multiple mid-
level patches. To analyse the impact of scales on perfor-
mance, we perform experiments on MIT-67 dataset using
different scales of our pyramid image representation. Our
results presented in Table IX show that a combination
of five scales performs slightly better than three scales.
This, however, requires more computational effort. We
therefore opt to use three scales considering the achieved
performance and the required computational load.

Spatial Scales Levels Performance (%)

0.75D,D 2 70.1
D, 1.25D 2 69.8
0.75D,D, 1.25D 3 71.2
0.5D, 0.75D,D, 1.25D, 1.5D 5 71.4

TABLE IX: Performance evaluation for different choices
of spatial scales in our pyramid image representation

Variants of Our Approach Accuracy (%)

Baseline CNN (w/o Spatially Unstructured layer) 65.4
Modified CNN (with Spatially Unstructured layer) 65.9
Mean-pooling 65.7
w/o pyramidal representation 68.5
CNN trained on imageNet 67.3

Proposed S2ICA 71.2

TABLE X: Ablative analysis on MIT-67 dataset. The
joint feature representations from baseline and modi-
fied CNNs gives the best performance. The proposed
pyramidal image representation results in a significant
performance boost.

V. CONCLUSION

This paper proposed a novel approach to handle the
large-scale deformations caused by spatial layout and
scale variations in indoor scenes. A pyramidal image
representation has been contrived to deal with scale
variations. A modified CNN architecture with a spatially
unstructured layer has been introduced to deal with the
variations caused by spatial layout changes. In order
to feasibly train a CNN on tasks with only a limited
annotated training dataset, the paper proposed an effi-
cient strategy which conveniently transfers learning from
a large-scale dataset to a different yet related task. A
robust feature representation of an image is then achieved
by extracting mid-level patches and encoding them in
terms of the convolutional activations of the trained
networks. Leveraging on the proposed spatial layout and
scale invariant image representation, the state of the art
classification performance has been achieved by using a
simple linear SVM classifier.
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