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Abstract Face recognition from image sets has nu-

merous real-life applications including recognition from

security and surveillance systems, multi-view camera

networks and personal albums. An image set is an un-

ordered collection of images (e.g., video frames, images

acquired over long term observations and personal al-

bums) which exhibits a wide range of appearance varia-

tions. The main focus of the previously developed meth-

ods has therefore been to find a suitable representation

to optimally model these variations. This paper argues

that such a representation could not necessarily encode

all of the information contained in the set. The paper,

therefore, suggests a different approach which does not

resort to a single representation of an image set. In-

stead, the images of the set are retained in their origi-

nal form and an efficient classification strategy is devel-
oped which extends well-known simple binary classifiers

for the task of multi-class image set classification. Un-

like existing binary to multi-class extension strategies,

which require multiple binary classifiers to be trained

over a large number of images, the proposed approach

is efficient since it trains only few binary classifiers on

very few images. Extensive experiments and compar-
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isons with existing methods show that the proposed

approach achieves state of the art performance for im-

age set classification based face and object recognition

on a number of challenging datasets.
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1 Introduction

Owing to a wide range of potential applications, face

recognition has been a research problem of significant

importance in the area of computer vision and pattern

recognition. Most of the effort in this regard has been

tailored towards the classification from single images,

that is, given a single query image, we are required to

find its best match in a gallery of images. However,

for many real-world applications (e.g., recognition from

surveillance videos, multi-view camera networks and

personal albums), multiple images of a person are read-

ily available and need to be explored for classification.

Face recognition from these multiple images is com-

monly studied under the framework of ‘image set classi-

fication’ and has attained significant research attention

in the recent years [5, 15,17,21,28,38,50–52,55,58].

Compared with single image based classification,

image set classification is more promising, since images

in a set provide richer information due to wide range of

appearance variations caused by changing illumination

conditions, head pose variations, expression deforma-

tions and occlusions. Although image set classification

provides a plenitude of data of the same object under

different variations, it simultaneously introduces many

challenges e.g., how to make an effective use of this
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data. The major focus of existing image set classifica-

tion methods has therefore been to find a suitable rep-

resentation which can effectively model the appearance

variations in an image set. For example, the methods

in [16,20,28,36,50,52,54] use subspaces to model image

sets, and set representative exemplars (generated from

affine hull/convex hull) are used in [5,21] for image set

representations. The mean of the set images is used as

part of image set representation in [21,34,38] and image

sets are represented as a point on a manifold geometry

in [15, 51]. The main motivation behind a single entity

representation of image sets (e.g., subspace, exemplar

image, mean, a point on the manifold) is to achieve com-

pactness and computational efficiency. However, these

representations do not necessarily encode all of the use-

ful information contained in the images of the image set

(as explained in detail in Sec 2). In this paper, we take

a different approach which does not represent an image

set by a single entity. We instead retain all the images

of the image set in their original form and design an ef-

ficient classification framework to effectively deal with

the plenitude of the data involved.

The proposed image set classification framework is

built on well-developed learning algorithms. Although,

these algorithms are originally designed for classifica-

tion from single images, we demonstrate that they can

be tailored for image set classification, by first individ-

ually classifying the images of a query set followed by

an appropriate voting strategy (see Sec 4.2). However,

due to the plenitude of the data involved in the case

of image set classification, a straight forward exten-

sion of these algorithms (from single image to image

set classification) would be computationally burden-

some. Specifically, since most of the popular learning

algorithms (e.g., Support Vector Machines, AdaBoost,

linear regression, logistic regression and decision tree

algorithms) are inherently binary classifiers, their ex-

tension to a multi-class classification problem (such as

image set classification) requires the training of mul-

tiple binary classifiers. One-vs-one and one-vs-rest are

the two most commonly adopted strategies for this pur-

pose. For a k-class classification problem, k(k−1)2 and k

binary classifiers are respectively trained for one-vs-one

and one-vs-rest strategies. Although, one-vs-rest trains

comparatively fewer classifiers, it still requires images

from all classes to train each binary classifier. Adopt-

ing either of the well-known one-vs-one or one-vs-rest

strategies for image set classification would therefore

require a lot of computational effort, since either the

number of images involved is quite large or a fairly large

number of binary classifiers have to be trained.

The proposed framework in this paper trains a very

small number of binary classifiers (mostly one or a max-

imum of five) on a very small fraction of images for the

task of multi-class image set classification. The frame-

work (see block diagram in Fig 1) first splits the training

images from all classes into two sets D1 and D2. The

division is done such that D1 contains uniformly ran-

domly sampled images from all classes with the total

number of images in D1 being comparable to the num-

ber of images of the query image set. D2 contains all

training images except the ones in D1. Next, a linear

binary classifier is trained to optimally separate images

of the query set from D1. Note that D1 has some im-

ages which belong to the class of the query set. However,

since these images are very few in number, the classifier

treats them as outliers. The trained classifier therefore

learns to discriminate the class of the query set from all

the other classes. Next, the learned classifier is evalu-

ated on the images of D2. The images of D2 which are

classified to belong to the images of the query set are of

particular interest. Knowing the original class labels of

these training images, we construct a histogram which

is then used to decide about the class of the query set. A

detailed description of the proposed framework is pre-

sented in Sec. 3 along with an illustration using a toy

example in Fig. 3.

The main strengths of the proposed method are

as follows. 1) A new strategy is introduced to extend

any binary classifier for multi-class image set classifica-

tion. Compared with the existing binary to multi-class

strategies (e.g., one-vs-one and one-vs-rest), the pro-

posed approach is computationally efficient to train. It

only requires the training of a fixed number of binary

classifiers (1 to 5 compared with k or k(k−1)
2 ) using a

small number of images. 2) Along with the predicted

class label of the query image set, the proposed method

gives a confidence level of its prediction. This informa-

tion is very useful and can be used as an indication of

a potential miss-classification. The prior knowledge of

a query image set being miss-classified allows for the

potential use of another binary classifier. The proposed

method can therefore accommodate the fusion of infor-

mation from different types of binary classifiers before

declaring the final class label of the query image set. 3)

The proposed method is easily scalable to new classes.

Unlike many existing image set classification methods,

the computational complexity of the proposed method

is not affected much by the addition of new classes in

the gallery (see Sec. 4.2). Some of the existing meth-

ods would require retraining on the complete dataset

(when new classes are enrolled), whereas, the proposed

method requires no additional training and can effi-

ciently discriminate the query class from other classes

using a fixed number of binary classifiers (Sec. 4.7).
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Fig. 1: Block diagram of the proposed method. The training data is divided into two sets D1 and D2. D1 contains

uniformly randomly sampled images from all classes such that the size of D1 is comparable to the size of the query

image set Xq. A binary classifier is trained, with images of Xq (labelled +1) and D1 (labelled −1). The classifier is

then tested on the images of D2. Knowing the class labels of images of D2 which are classified +1, we formulate a

histogram (see Eq. 1), which is then used to decide about the class of Xq. See a toy example in Fig 3 for illustration.

A preliminary version of our method appeared in

[18]. This paper extends [18] in the following manners.

1) We encode a facial image in terms of the activa-

tions of a trained deep convolutional neural network.

Compared with a shallow representation, the proposed

learned feature representation proves to be more ef-

fective in discriminating images of different individuals

(Sec. 3.1). 2) In order to further enhance the effective-

ness of the proposed method, we propose three differ-

ent sampling strategies. One of the proposed strategies

also takes into consideration the head pose information

of facial images which results in an overall improved

performance of the method (Sec. 3.4). 3) We propose

an extension of our method for the task of still to video

face recognition which is an important and challenging

real-life problem with numerous applications to secu-

rity and surveillance systems (Sec. 4.4). 4) The efficacy

of the proposed method is demonstrated through ex-

tensive experiments on four additional unconstrained

real-life datasets (Sec. 4). We further extend our ex-

perimental evaluations by presenting a quantitative ro-

bustness analysis of different aspects of the proposed

method (Sec. 4.5).

2 Related Work

The main focus of the existing image set classification

methods is to find a suitable representation which can

effectively model the appearance variations within an

image set. Two different types of approaches have been

previously developed for this purpose. The first ap-

proach models the variations within the images of a

set through a statistical distribution and uses a mea-

sure such as KL-divergence to compare two sets. The

methods based on this approach are called parametric

model-based methods [3,42]. One of their major limita-

tion is their reliance on a very strong assumption about

the existence of a statistical correlation between image

sets. The second approach for image set representa-

tion avoids such assumptions. The methods based on

this approach are called non-parametric model-based

methods [5, 15, 17, 21, 28, 38, 46, 50–52, 55, 58] and have

shown to give a superior performance compared with

the parametric model-based methods. A brief overview

of the non-parametric model-based methods is given

below.

Subspaces have been very commonly used by the

non-parametric methods to represent image sets. Ex-

amples include image sets represented by linear sub-

spaces [28, 54], orthogonal subspaces [36] and a combi-

nation of linear subspaces [50, 52]. Principal angles are

then used to compare subspaces. A drawback of these

methods is that they represent image sets of different

sizes by a subspace of the same dimension. These meth-

ods cannot therefore uniformly capture the critical in-

formation from image sets with different set lengths.
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Specifically, for sets with a larger number of images

and diverse appearance variations, the subspace-based

methods cannot accommodate all the information con-

tained in the images. Image sets can also be represented

by their geometric structures i.e. affine hull or convex

hull models. For example, Affine Hull Image Set Dis-

tance (AHISD) [5] and Sparse Approximated Nearest

Points (SANP) [21] use affine hull, whereas Convex Hull

Image Set Distance (CHISD) [5] uses the convex hull of

the images to model an image set. A set-to-set distance

is then determined in terms of the Euclidean distance

between the set representative exemplars which are gen-

erated from the corresponding geometric structures. Al-

though these methods have shown to produce a promis-

ing performance, they are prone to outliers and are

computationally expensive (since they require a direct

one-to-one comparison of the query set with all sets in

the gallery). Some of the non-parametric model-based

methods represent an image set as a point on a certain

manifold geometry e.g., Grassmannian manifold [15,50]

and Lie group of Riemannian manifold [51]. The mean

of the set images has also been used either solely or as

a part of image set representation in [21,34,38].

In this paper, we argue that a single entity (e.g., a

subspace, a point on a manifold, or an exemplar gener-

ated from a geometric structure) for image set represen-

tation can be sub-optimal and could result in the loss

of information from the images of the set. For example,

for image sets represented by a subspace, the amount

of the retained information depends on the selected di-

mensions of the subspace. Similarly, generating repre-

sentative exemplars from geometric structures could re-

sult in exemplars which are practically non-existent and

are very different from the original images of the set.

We, therefore, take a different approach which does not

require any compact image set representation. Instead,

the images are retained in their original form and a

novel classification concept is proposed which incorpo-

rates well-developed learning algorithms to optimally

discriminate the class of the query image set from all

other classes. A detailed description of the proposed

framework is presented next.

3 Proposed Method

Our proposed method first encodes raw face images in

terms of the activations of a trained Convolutional Neu-

ral Network (CNN) (Sec. 3.1). The encoded face images

are then used by the proposed image set classification

algorithm, whose detailed description is presented in

Sec. 3.2. Two important components of our proposed al-

gorithm (choice of the binary classifiers and sampling

strategies) are further elaborated in detail in Sec. 3.3

and Sec. 3.4, respectively. The proposed image set clas-

sification algorithm is then finally illustrated with the

help of a toy example in Sec. 3.5.

3.1 Convolutional Feature Encoding

We are interested in mapping raw face images to a dis-

criminative feature space where faces of different per-

sons are easily separable. For this purpose, instead of

using shallow or local feature representations (as in

[18]), we represent face images in terms of activations

of a trained deep Convolutional Neural Network (CNN)

model. Learned representations based on CNNs have

significantly outperformed hand-crafted representations

on nearly all major computer vision tasks [2, 7, 24, 25].

To this end, we adapt the parameters of AlexNet [29]

(originally trained on 1.2 million images of 1000 object

classes) for facial images. AlexNet consists of 5 convo-

lutional and 3 fully-connected layers. In order to adapt

the parameters of the network for facial images, we first

encode faces of BU4DFE dataset [57] in terms of the

activations of last convolutional layer. These encoded

faces are then used as input to fine-tune the param-

eters of the three fully connected layers after chang-

ing the number of neurons in the last layer from 1000

(object categories in the ILSVRC [41]) to 100 (num-

ber of subjects in the BU4DFE dataset). After learn-

ing the parameters of the fully connected part of the

network, we append it back to the convolutional part,

and fine-tune the complete network for facial images of

BU4DFE dataset. Once the network parameters have

been adapted, we feed the raw face images to the net-

work’s input layer after mean normalization. The pro-
cessed output from the first fully connected layer of the

network is considered to be our convolutional feature

representation of the input face images. Apart from rep-

resenting images in terms of the activations of AlexNet

adapted for facial images of BU4DFE dataset, we also

explore their representation in terms of activations of

VGG-Face CNN model [39] which is specifically trained

on 2.6 million facial images of 2, 622 subjects. A perfor-

mance comparison of different feature encoding meth-

ods is presented in Sec. 4.6 (ii).

3.2 Image Set Classification Algorithm

Problem Description: For k classes of a training data,

we are given k image sets X1,X2, · · · Xk and their cor-

responding class labels yc ∈ [1, 2, · · · k]. An image set

Xc = {x(t)|y(t) = c; t = 1, 2, · · ·Nc} contains all Nc
training images x(t) belonging to class c. Note that

for training data with multiple image sets per class,
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we combine the images from all sets into a single set.

During classification, we are given a query image set

Xq = {x(t)}Nq

t=1, and the task is to find the class label

yq of Xq.
The proposed image set classification algorithm is

summarized in Algorithm. 1. The details are presented

below.

1. After encoding all the face images in terms of their

convolutional activations, the images from all train-

ing sets are gathered into a single setD = {X1,X2, · · · Xk}.
Next, D is divided into two sets: D1 and D2 by

adopting one of the sampling strategies described in

Sec. 3.4. The division is done such that D1 contains

an equal representation of images from all classes

of the training data and the total number of im-

ages in D1 is comparable to that of Xq. The class

label information of images in D1 and D2 is stored

in sets yD1
= {y(t) ∈ [1, 2, · · · k], t = 1, 2, · · ·ND1

}
and yD2

= {y(t) ∈ [1, 2, · · · k], t = 1, 2, · · ·ND2
}

respectively.

2. Next, we train a binary classifier C1. Training is

done on the images of Xq and D1. All images in

Xq are labelled +1, while the images in D1 are la-

belled −1. Since images from all classes are present

in D1, the classifier learns to separate images of Xq
from the images of the other classes. Note that D1

does have a small number of images from the same

class as of Xq. However, since these images are very

few, the binary classifier treats them as outliers and

learns to discriminate the class of the query image

set from all other classes (Sec. 4.5 (ii)).

3. The trained classifier C1 is then tested on the images

of D2. The images in D2 classified as +1 (same as

images of Xq) are of interest. Let yD+
2
⊂ yD2

contain

the class labels of images of D2 classified +1 by the

classifier C1.

4. A normalized frequency histogram h of class labels

in yD+
2

is computed. The cth value of the histogram,

hc, is given by the percentage of the images of class

c in D2 which are classified +1. Formally, hc is given

by the ratio of the number of images of D2 belonging

to class c and classified as +1 to the total number

of images of D2 belonging to class c. This is given

by,

hc =

∑
y(t)∈y

D+
2

δc(y
(t))

∑
y(t)∈yD2

δc(y(t))
,where

δc(y
(t)) =

{
1, y(t) = c

0, otherwise.

(1)

5. A class in D2 with most of its images classified as

+1 can be predicted as the class of Xq. The class

label yq of Xq is therefore given by,

yq = arg max
c

hc. (2)

We can also get a confidence level d of our predic-

tion of yq. This is defined in terms of the difference

between the maximum and the second maximum

values of histogram h,

d = max
c∈{1···k}

hc − max
c∈{1···k}\yq

hc. (3)

We are more confident about our prediction if the

predicted class is a ‘clear winner’. In the case of

closely competing classes, the confidence level of the

prediction will be low.

6. We declare the class label of Xq (as in Eq. 2) pro-

vided that the confidence d is greater than a certain

threshold. The value of the threshold is determined

empirically by performing experiments on a valida-

tion set. Otherwise, if the confidence level d is less

than the threshold, steps 1-5 are repeated, for dif-

ferent random samplings of images into D1 and D2.

After every iteration, a mean histogram h̄ is com-

puted using the histogram of that iteration and the

previous iterations. The confidence level d is also

computed after every iteration using,

d = max
c∈{1···k}

h̄c − max
c∈{1···k}\yq

h̄c. (4)

Iterations are stopped if the confidence level d be-

comes greater than the threshold or after a maxi-

mum of five iterations. Performing more iterations

enhances the robustness of the method (since dif-

ferent images are selected into D1 and D2 for every

iteration) but at the cost of an increased computa-

tional effort. Our experiments revealed that a max-

imum of five iterations is a good trade-off between

the robustness and the computational complexity

(Sec. 4.6 (iii)).

7. If the confidence level d (see Eq 4) is greater than

the threshold, we declare the class label of Xq as

yq = arg maxc h̄c. Otherwise, if the confidence level

is lower than the threshold, declaring the class label

would highly likely result in a miss-classification. In

which case, we use another binary classifier C2. The

procedure is repeated for a different binary classifier

C2. The decision about yq is then made based on

the confidence levels of C1 and C2. The prediction

of the more confident classifier is considered as the

final decision. The description regarding the choice

of the binary classifiers C1 and C2 is given next.
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Algorithm 1 The proposed Image Set Classification algorithm

Input: Training image sets X1,X2, · · · Xk; Query image set Xq; threshold
1: D ← {X1,X2, · · · Xk} . D: All training images
2: D1 ←

⋃
cD1c where D1c is a random subset of Xc

3: D2 ← D \ D1 . D is divided into D1 and D2

4: C1 ← train(D1,Xq) . Xq labeled +1 and D1 labeled −1
5: lD2

← test(C1,D2) . Test D2 on classifier C1. lD2
: binary labels of D2 images

6: yD+
2
← lD2

,yD2
. labels of images in D2 classified +1

7: h← yD+
2
,yD2

. Normalized histogram, see Eq 1

8: d← h . Confidence level, see Eq. 3
9: if d > threshold then

10: yq ← arg maxc hc

11: else
12: repeat . Repeat for different random selections in D1 and D2

13: d, h̄← Repeat steps 2-8
14: until d ≥ threshold or repeated 5 times
15: if d > threshold then
16: yq ← arg maxc h̄c

17: else
18: d, h̄← Repeat steps 2-14 for another binary classifier C2

19: h̄← Consider one from C1 and C2 with higher d
20: yq ← arg maxc h̄c

21: end if
22:end if
Output: Label yq of Xq

3.3 The choice of binary classifiers

The proposed framework requires a binary classifier to

distinguish between images of Xq and D1. The choice

of the binary classifier should be based on its ability to

generalize well to unseen data during the testing phase.

Moreover, since the binary classifier is being trained on

images of Xq and D1 and that some images in D1 have

the same class as of Xq, the binary classifier should not

overfit on the training data and treat these images as

outliers. For these reasons, a Support Vector Machine

(SVM) with a linear Kernel is deemed to be an ap-

propriate choice. It is known to produce an excellent

generalization to unknown test data and can effectively

handle outliers.

Two classifiers (C1 and C2) are used by the pro-

posed framework. C1 is a linear SVM with L2 regu-

larization and L2 loss function, while C2 is a linear

SVM with L1 regularization and L2 loss function [10].

Specifically, given a set of training example-label pairs(
x(t), y(t)

)
, y(t) ∈ {+1,−1}, C1 solves the following op-

timization problem,

min
w

1

2
wTw + C

∑
t

(
max

(
0, 1− y(t)wTx(t)

))2
, (5)

while, C2 solves the following optimization problem,

min
w
|w|1 + C

∑
t

(
max

(
0, 1− y(t)wTx(t)

))2
. (6)

Here, w is the coefficient vector to be learned and

C > 0 is the penalty parameter used for regularization.

After the learning of the SVM parameter w, classifica-

tion is performed based on the value of wTx(t). Note

that the coefficient vector w learned by classifier C2

(trained for the challenging examples) is sparse. Learn-

ing a sparse w for C2 further enhances the generaliza-

tion capability for the challenging cases. We have also

evaluated other binary classifiers which include non-

linear SVM with Radial Basis Function (RBF) and Chi-

Square kernels and random decision forests (Sec. 4.6(i)).

3.4 Sampling Strategies

Given all the training image sets X1,X2, · · · Xk, we gather

these images (of the training data) into a set D. Next,

the images in D are sampled into two subsets (D1 and

D2) which are used by the proposed algorithm, as ex-

plained in Sec 3.2. For the sampling of the images of

D to generate D1 and D2, we introduce three different

sampling strategies. The following two general rules of

thumb have been followed for sampling: 1) the total

number of images in D1 are kept comparable to the

number of images of the query set Xq. Since our pro-

posed image set classification algorithm trains a binary

classifier to discriminate between D1 and Xq, a huge dis-

parity between number of images in D1 and Xq could

result in a trained binary classifier which is biased to-

wards the majority class. 2) images in the sampled set

D1 have an equal representation (> 0) from all the



Empowering Simple Binary Classifiers for Image Set based Face Recognition 7

classes of the training data. The detailed description

of the proposed sampling strategies follows next.

3.4.1 Uniform Random Sampling

Let D1c be a randomly sampled subset of Xc with a

set size ND1c , where ND1c =
⌈
Nq

k

⌉
, such that ND1c 6= 0

in any case, then the set D1 is formed by the union

operation: D1 =
⋃
cD1c, c = 1, 2, · · · k. D2 is obtained

by D2 = D \ D1.

3.4.2 Bootstrapped Sampling

We first perform bootstrapping and sample a set D′
from D such that D′ ⊂ D and |D′| = b0.8 |D|c. Images

in D′ are randomly picked from D. D1 and D2 are then

uniformly randomly sampled from D′ by following the

same procedure described in Sec 3.4.1. Sampling from

the bootstrapped set D′ over multiple iterations gives

a data augmentation effect which eventually introduces

robustness and results in an improved performance of

the proposed method (Sec 4.6).

3.4.3 Pose-based Sampling

During our experiments, a visual inspection of the chal-

lenging YouTube celebrities dataset (Sec. 4.1) revealed

that many of the miss-classified query image sets had

face images with a head pose (such as profile views)

which is otherwise not very commonly present in other

training images. For such cases, only those images in D2

with the same pose as those of images of Xq (irrespec-

tive of their classes) are classified as +1. Our proposed
pose-based sampling strategy aims to address this is-

sue. The basic intuition here is to first estimate the

pose of the images, and use this pose information to

assign images into D1 and D2. For example, if most of

the images of Xq are in right profile views, our sampling

of the training images into D1 and D2 should consider

only images with the right profile views. This helps to

overcome any bias in the classification introduced by

the head pose during classification.

In this strategy, we first determine the pose group

of the face images using the pose group approximation

method (described next). We then sample D′ from D
such that D′ has only those images from D whose pose

group is similar to the images of the query image set Xq.
Images from D′ are then uniformly randomly sampled

into D1 and D2 by following the procedure explained

in Sec 3.4.1. Note that D′ is supposed to have an equal

representation of images from all training image sets.

However, we might not necessarily have images with the

same pose as those of Xq for all training sets. From such

training sets, we select the images with the most similar

poses into D′. The employed pose group approximation

method [19] is described next.

Pose group approximation: An image is said to be-

long to a pose group g ∈ {1, 2, · · ·G}, if its pose along

the pitch direction (y-axis) is within θg ± 15◦. For our

purpose, we defineG = 5 and θ =
[
−60, −30, 0, 30, 60

]
.

The process of pose group approximation has two steps:

training and testing.

Training: Let Xg ∈ Rm×ng contain ng images x(t) ∈
Rm whose pose is within θg ± 15◦. We automatically

select these images from a Kinect data set (see Sec 4.1).

The pose of Kinect images can be determined by the

random regression forest based method of [11]. From

Xg, we want to extract the directions of major data

orientation (principal directions). To achieve that, we

first subtract the mean image from Xg and compute its

covariance matrix Σg as follows,

X̄g = Xg −
1

ng

∑
t

x(t), (7)

Σg = X̄gX̄
T
g . (8)

The singular value decomposition of the covariance

matrix Σg results in Σg = UgSgVg. The component

Ug contains the eigenvectors arranged in the descend-

ing order of their significance. From Ug, we select the

top k eigenvectors corresponding to the k largest eigen-

values and use them as columns to construct a matrix

Sg ∈ Rm×k. Sg is therefore a subspace whose columns

represent the predominant data structure in the images

of Xg. Next, during the testing phase of our pose group

approximation approach, Sg is used for a linear regres-

sion based classification strategy.

Testing: The pose group P(x(t)) of the image x(t) is

determined by,

P(x(t)) = arg min
g

∥∥∥x(t) − x̃(t)
g

∥∥∥
2
, (9)

where x̃
(t)
g is linearly constructed from Sg as follows,

x̃(t)
g = Sgα(t)

g . (10)

The above equation has an analytical solution given

by,

α(t)
g = (STg Sg)−1STg x(t). (11)

A few sample results of our pose group approxima-

tion method are presented in Fig 2. The pose group

P(x(t)) of all the images of the training data as well
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Fig. 2: Sample results of pose group approximation
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Fig. 3: Toy example to illustrate the proposed method. Consider a training set with three classes and the task is

to find the class of Xq (a). Data points from the three training image sets X1, X2, X3 and a query image set Xq
are shown. (b) Data points from Xq and D1 (uniformly randomly sampled from X1, X2 and X3) are shown. (c)

The learnt SVM boundary between Xq (labelled +1) and D1 (labelled −1). (d) The data points of D2 w.r.t. the

learnt SVM boundary. Since the points of X3 in D2 lie on the same side of the boundary as the points of Xq, the

proposed method declares Xq to be from X3. Figure best seen in color.

as the images of the query set Xq is determined by fol-

lowing the procedure explained above. Next, we sample

images from D into D′ such that images in D′ have the

same pose as those of images of Xq. We ensure the in-

clusion of an equal representation of all classes in D′.
In case of classes with no or very few images with the

same pose as of Xq, images with nearly similar poses

are selected. After getting D′, we sample D1 and D2 by

following the same procedure as explained in Sec. 3.4.1.

3.5 Illustration with a Toy Example

The proposed image set classification algorithm is il-

lustrated with the help of a toy example in Fig 3. Let

us consider a three class set classification problem in

which we are given three training sets X1, X2, X3 and a

query set Xq. The data points of the training sets and

the query set are shown in Fig 3 (a). First, we form D1

by randomly sampling points from X1, X2 and X3. Fig 3

(b) shows the datapoints of D1 and Xq. Next, a linear

SVM is trained by labelling the datapoints of Xq as +1

and D1 as −1. Note that SVM (Fig 3 (c)) ignores the

miss-labelled points (the points of X3 in D1) and treats

them as outliers. Finally, we classify the data points of

D2 from the learned SVM boundary. Fig 3 (d) shows

that the SVM labels the points of X3 in D2 as +1. The

proposed algorithm therefore declares the class of X3 to

be the class of Xq.

4 Experiments

We perform experiments to evaluate the performance

of the proposed method for two tasks 1) image set

classification based face and object recognition, and 2)

still to video imagery based face recognition. For im-

age set classification based object recognition, exper-

iments are performed on ETH-80 dataset [32] while

Honda/UCSD [31], CMU Mobo [14], YouTube celebri-

ties [27], a composite RGB-D Kinect dataset (obtained

by combining three Kinect datasets), PubFig [30], COX
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[22] and FaceScrub [35] datasets are used for image set

classification based face recognition. For still to video

face recognition, the COX dataset is used. It should

be noted that most of the previous image set classi-

fication methods have only been evaluated on Honda,

CMU Mobo, ETH-80 and YouTube celebrities dataset.

Amongst these datasets, only YouTube celebrities dataset

is a real life dataset whereas Honda, CMU Mobo and

ETH-80 are considered relatively easy since they are ac-

quired in indoor lab environment under controlled con-

ditions. Apart from the challenging Youtube celebrities

dataset, this paper also presents a comparative perfor-

mance evaluation of our method with the existing meth-

ods [5, 15, 17, 21, 28, 38, 50–52, 54, 55, 58] on three addi-

tional real-life datasets collected under unconstrained

conditions. These include PubFig, COX and FaceScrub

datasets.

Below, we first give a brief description of each of

these datasets followed by the adopted experimental

protocols (Sec. 4.1). We then present a performance

comparison of our proposed method with the baseline

multi-class classification strategies (Sec. 4.2) followed

by a comparison with the existing state of the art image

set classification methods (Sec. 4.3). The performance

analysis for still to video based face recognition is pre-

sented in Sec. 4.4. A quantitative robustness analysis of

different aspects of the proposed method is presented in

Sec. 4.5. Finally, an ablative study to asses the contri-

butions and impact of different components of our pro-

posed method towards its overall performance is pre-

sented in Sec 4.6. A comparison of the computational

complexity of different methods is given in Sec. 4.7.

4.1 Datasets and Experimental Settings

The Honda/UCSD dataset [31] contains 59 video

sequences (with 12 to 645 frames in each video) of 20

subjects. We use Viola and Jones face detection [49]

algorithm to extract faces from video frames. The ex-

tracted faces are then resized to 20×20. For our experi-

ments, we consider each video sequence as an image set

and follow an evaluation configuration similar to [31].

Specifically, 20 video sequences are used for training

and the remaining 39 sequences are used for testing.

Three separate experiments are performed by consider-

ing all frames of a video as an image set and limiting

the total number of frames in an image set to 50 and

100 (to evaluate the robustness for fewer images in a

set). Each experiment is repeated 10 times for differ-

ent random selections of the training and testing image

sets.

The CMU Mobo (Motion of Body) dataset [14]

contains a total of 96 video sequences of 24 subjects

walking on a treadmill. The faces from the videos are

extracted using [49] and resized to 40 × 40. Similar to

[21,51], we consider each video as an image set and use

one set per subject for training and the remaining sets

for testing. For a consistency, experiments are repeated

ten times for different training and testing sets.

YouTube celebrities [27] dataset contains 1910 videos

of 47 celebrities. The dataset is collected from YouTube

and the videos are acquired under real-life scenarios.

The faces in the dataset exhibit, therefore, a wide range

of diversity and appearance variations in the form of

changing illumination conditions, different head pose

rotations and expression variations. Since the resolution

of the face images is very low, face detection by [49] fails

for a significant number of frames for this dataset. We,

therefore, use tracking [40] to extract faces. Specifically,

knowing the location of the face window in the first

frame (provided with the dataset), we use the method

of Ross et al. [40] to track the face region in the subse-

quent frames. The extracted face region is then resized

to 30 × 30. In order to perform experiments, we treat

the faces acquired from each video as an image set and

adopt a five fold cross validation experimental setup

similar to [21, 50–52]. The complete dataset is divided

into five equal folds with minimal overlap. Each fold has

nine image sets per subject, three of which are used for

training and the remaining six are used for testing.

Composite Kinect Dataset is achieved by combining

three distinct Kinect datasets: CurtinFaces [33], Biwi

Kinect [11] and an in-house dataset acquired in our

laboratory. The number of subjects in each of these

datasets is 52 (5000 RGB-D images), 20 (15,000 RGB-

D images) and 48 (15000 RGB-D images) respectively.

The random forest regression based classifier of [12] is

used to detect faces from the Kinect acquired images.

The images in the composite dataset have a large range

of variations in the form of changing illumination con-

ditions, head pose rotations, expression deformations,

sun glass disguise, and occlusions by hand. For perfor-

mance evaluation, we randomly divide RGB-D images

of each subject into five uniform folds. Considering each

fold as an image set, we select one set for training and

the remaining sets for testing. The experiments are re-

peated five times for different selections of training and

testing sets.

ETH-80 object dataset contains still RGB images

of eight object categories. These include cars, cows, ap-

ples, dogs, cups, horses, pears and tomatoes. Each ob-

ject category is further divided into ten subcategories

such as different brands of cars or different breeds of

dogs. Each subcategory contains images under 41 ori-

entations. For our experiments, we use the 128 × 128

cropped images [1] and resize them to 32×32. We follow
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Fig. 4: Sample images from different datasets. Note the high intra class variations in the form of different head

poses, illumination variations, expression deformations and occlusions.

an experimental setup similar to [28, 50, 51]. Images of

an object in a subcategory are considered as an image

set. For each object, five subcategories are randomly

selected for training and the remaining five are used

for testing. Ten runs of experiments are performed for

different random selections of the training and testing

sets.

Public Figures Face Database (PubFig) [30] is a

real-life dataset of 200 people collected from the inter-

net. The images (static RGB) of the dataset have been

acquired in uncontrolled situations without any user

cooperation. The sample images of a subject in Fig. 4

illustrate the large variations in the images caused by

pose, lighting, expressions, backgrounds and camera po-

sitions. For our experiments, we divide equally the im-

ages of each subject into three folds. Considering each

fold as an image set, we use one of them for training

and the remaining two are used for testing. Experiments

are repeated five times for different random selections

of images for the training and testing folds.

The COX [22] dataset contains 1000 high resolution

still images and 4000 uncontrolled low resolution video

sequences of 1000 subjects. The videos have been cap-

tured inside a gymnasium with subjects walking nat-

urally and without any restriction on expression and

head orientation. The dataset contains four videos per

subject. The face resolution, head orientation and light-

ing conditions in each video are significantly different

from the others. Sample images of a subject from this

dataset are shown in Fig. 4. For our image set classifica-

tion experiments, we use the frames of each video as an

image set and follow a leave-one-out strategy where one

image set is held out for testing and remaining are used

for training. For consistency, four runs of experiments

are performed by swapping the training and testing im-

age sets.

For still to video based face recognition experiments,

we consider the high resolution still images (which were

acquired with the full user cooperation) as our gallery.

The low resolution images of the video sequence are

used as the probe image set. Still to video based face

recognition experiments are performed by following the

standard evaluation protocol described in [23]. The still

images and images from the video sequences of 300

individuals are randomly selected to learn a common

embedding space for both the low and high resolution

images using the technique in [44]. The images of the

remaining 700 individuals are used for testing. Experi-

ments are repeated five times for different random shuf-

fling of subjects between the training and testing sets. A

common embedding space is learnt because the gallery

and probe data possess very different visual charac-

teristics i. e. the gallery contains good quality frontal

face images acquired with full-user cooperation whereas

the probes are low quality non-frontal images acquired

without any cooperation.
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FaceScrub [35] is a large dataset of 530 (265 males and

265 females) celebrities and famous personalities. The

dataset is collected from the internet and comprises a

total of 107,818 RGB face images with approximately

200 images per person. Few sample images of a person

in Fig 4 show the wide range of appearance variations

in the images of an individual from the dataset. For

our experiments, we divide the images of each person

into ten folds. Considering each fold as an image set, we

use one fold for training and the remaining are used for

testing. Experiments are done five different times for a

different random selection of images into each fold.

Following the evaluation configurations described

above, we perform experiments and compare our method

with the baseline methods, and current state of the

art methods. A detailed analysis, extensive performance

evaluations and comparisons are presented next.

4.2 Comparison with the baseline methods

Linear SVM based one-vs-one and one-vs-rest multi-

class classification strategies are used as baseline meth-

ods for comparison. Note that these baseline methods

are suitable for classification from single images. For im-

age set classification, we first individually classify every

image of the query image set followed by a majority

voting to decide about the class of the query image set.

Experimental results in terms of average identification

rates and standard deviations on all datasets are pre-

sented in Table 1. Note that for the Honda dataset,

we perform three experiments i.e., by considering all

frames of the video as an image set, then limiting the

number of images in a set to 100 and 50 (see Sec. 4.3).

Here, the results presented for the Honda/UCSD dataset

are only for all frames of the videos considered as im-

age sets. The results show that, amongst the compared

baseline multi-class classification strategies, one-vs-rest

performs slightly better than one-vs-one. Our method

performs better than the baseline methods on all datasets

except ETH-80. A possible explanation for a lower per-

formance on the ETH-80 is that the proposed method

trains a binary classifier on images of Xq and D1, which

is then evaluated onD2. The setD1 contains
⌈
Nq

k

⌉
images

with same label as Xq. For larger k, these images are

few in number and do not affect training of the binary

classifier. However, for smaller values of k (as is the case

for ETH-80 dataset, k = 8) the proportion of these im-

ages is higher and causes slight performance degrada-

tion. A quantitative robustness analysis of the proposed

method for different values of k is presented in Sec 4.5

(iii).

Table 2 presents a comparison of the computational

complexity in terms of the required number of binary

classifiers and the number of images used to train each

of these classifiers. One-vs-one trains k(k−1)
2 binary clas-

sifiers and uses images from two classes to train each

classifier. Although the number of trained classifiers for

one-vs-rest are comparatively less (k compared with
k(k−1)

2 ), the number of images used to train each bi-

nary classifier is quite large (all images of the dataset

are used). In comparison, our proposed method trains

only few binary classifiers (a maximum of five for the

challenging cases) and the number of images used for

training is also small. A main difference of our method

from baseline strategies is that it performs all compu-

tations at run-time.

4.3 Comparison with existing image set classification

methods

We present a comparison of our method with a number

of recently proposed state of the art image set classifica-

tion methods. The compared methods include Mutual

Subspace Method [54], Discriminant Canonical Corre-

lation Analysis (DCC) [28], Manifold-to-Manifold Dis-

tance (MMD) [52], Manifold Discriminant Analysis (MDA)

[50], the Linear version of the Affine Hull-based Im-

age Set Distance (AHISD) [5], the Convex Hull-based

Image Set Distance (CHISD) [5], Sparse Approximated

Nearest Points (SANP) [21], Covariance Discriminative

Learning (CDL) [51], Mean Sequence Sparse Represen-

tation Classification (MSSRC) [38], Set to Set Distance

Metric Learning (SSDML) [58], Regularized Nearest
Points (RNP) [55] and Non-Linear Reconstruction Mod-

els (NLRM). We use the implementations provided by

the respective authors for all methods. The parameters

for all methods are optimized for best performance.

Specifically, for MSM, Principal Component Analy-

sis (PCA) is applied to retain 90% of the total energy.

For DCC, the dimensions of the embedding space are

set to 100. The number of retained dimensions for a

subspace are set to 10 (90% energy is preserved) and

the corresponding 10 maximum canonical correlations

are used to compute set-set similarity. For datasets with

one training set per class (Honda/UCSD, CMU, Kinect,

PubFig, COX and FaceScrub), we randomly divide the

training set into two subsets to construct the within

class sets as in [28]. The parameters for MMD and MDA

are used from [52] and [50] respectively. The number of

connected nearest neighbours to compute the geodesic

distance is either set to 12 or to the number of images in

the smallest image set of the dataset. The ratio between

the Euclidean distance and the geodesic distance is op-
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Table 1: Performance Comparison with the baseline methods

Methods Honda Mobo YTC Kinect

one-vs-one 92.1± 2.2 94.7± 2.0 67.7± 4.0 94.3± 3.5
one-vs-rest 94.6± 1.9 96.7± 1.6 68.4± 4.2 94.6± 3.3
This Paper 100.0± 0.0 98.3± 0.7 77.4± 3.5 98.3± 1.7

ETH PubFig COX FS

one-vs-one 96.2± 2.9 87.4± 0.5 67.4± 11.5 80.1± 1.5
one-vs-rest 97.6± 1.5 89.1± 0.1 68.2± 11.4 80.3± 1.5
This Paper 96.1± 1.8 98.6± 0.3 74.1± 10.2 91.5± 0.5

Average identification rates (percentage) of our method and two well-known
multi-class classification strategies. See Table 2 for a comparison of the com-
putational complexity.

Table 2: Complexity Analysis

Method Total binary
classifiers

Images to train each
classifier

One-vs-one k(k−1)

2
{1081} 2Nc {600}

One-vs-rest k {47}
k∑

c=1
Nc {14000}

This Paper 1− 5 2Nq {200}

The proposed method trains just few binary classifiers and
the number of images used for training is very small. The
typical parameters values for YouTube celebrities dataset
are given in brackets.

timized for all data sets. In case of MMD, the distance

is computed in terms of maximum canonical correla-

tion. No parameter settings are required for AHISD.

For CHISD, the same error penalty term (C = 100) as

in [5] is used. For SANP, the same weight parameters

as in [21] are adopted for optimization. For GEDA, we

set k[cc] = 1, k[proj] = 100 and v = 3 (the value of v is

searched over a range of 1-10 for best performance). The

number of eigenvectors r used to represent an image set

is set to 9 and 6, respectively, for Mobo and YouTube

celebrities and 10 for all other datasets. No parameter

settings are required for CDL. For RNP [55], PCA is

applied to preserve 90% of the energy and the same

weight parameters as in [55] are used. No parameter

configurations are required for MSSRC and SSDML.

For NLRM, we use majority voting and perform PCA

to retain the dimensions of the embedded space to 400.

The experimental results, in terms of the average

identification rates and standard deviations of the dif-

ferent methods on the Honda/UCSD dataset, are pre-

sented in Table 3. The proposed method achieves a per-

fect classification for all frames of the video sequence

(considered as an image set) as well as when the total

number of images in the set is reduced to 100 and 50.

This proves that our method is robust w.r.t. the num-

ber of images in the set and it is suitable for real-life

scenarios (where only a limited number of images are

available in a set).

The average identification rates and standard devi-

ations of the different methods when tested on CMU

Mobo, YouTube Celebrities (YTC), Kinect, ETH-80,

PubFig, COX and FaceScrub (FS) datasets are summa-

rized in Table 4. The results prove that the proposed

method outperforms most of the existing methods on all

datasets. The gain in performance is more significant for

YTC, PubFig and FS datasets. Note that YTC, PubFig

and FS are very challenging datasets since their images

have been acquired in real life scenarios without any

user cooperation. The proposed method achieves a rel-

ative performance boost of 8.4%, 11.0% and 12.7% on

YTC, PubFig and FS datasets, respectively. Another

notable aspect of the proposed method is that it not

only works for image set classification based face recog-

nition but also achieves a very high identification rate

of 96.1% for the task of image set classification based

object recognition.

The performance of all methods is further analyzed

in Fig 5 and Fig 6 on four real-life datasets which in-

clude YTC, PubFig, COX and FS. Specifically, Cumu-

lative Match Characteristics (CMC) and Receiver Op-

erating Characteristics (ROC) curves for the top per-

forming methods are presented in Fig 5 and Fig 6 re-

spectively. The results in Fig 5 suggest that the pro-

posed method consistently achieves the highest rank-

1 to rank-10 identification rates for most of the eval-

uated datasets. ROC curves in Fig 6 show that the

proposed method outperforms all others. Equal error

rates are shown in Fig 7 to compare the verification

performance of different methods on all datasets. The

results show that the proposed method achieves supe-

rior performance by producing the lowest equal error

rates compared with the existing methods on almost

all of the evaluated datasets.

The state of the art performance of the proposed

method is attributed to the fact that (unlike existing

methods) it does not resort to a single entity repre-
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Table 3: Performance Comparison on Honda/UCSD dataset

MSM DCC MMD MDA AHISD CHISD SANP

All 88.2± 3.8 92.5± 2.2 92.0± 2.2 94.3± 3.3 91.2± 1.7 93.6± 1.6 95.1± 3.0
100 85.6± 4.3 89.2± 2.4 85.5± 2.1 91.7± 1.6 90.7± 3.2 91.0± 1.7 94.1± 3.2

50 83.0± 1.7 82.0± 3.3 83.1± 4.4 85.6± 5.8 89.8± 2.1 90.5± 2.0 91.9± 2.7

CDL MSSRC SSDML RNP NLRM This Paper

All 98.9± 1.3 97.9± 2.6 86.4± 3.6 95.9± 2.1 100.0± 0.0 100.0± 0.0
100 96.2± 1.2 96.9± 1.3 84.3± 2.2 92.3± 3.2 100.0± 0.0 100.0± 0.0
50 93.9± 2.2 94.3± 1.4 83.4± 1.7 90.2± 3.2 100.0± 0.0 100.0± 0.0

Average identification rates (percentage) and standard deviations of different meth-
ods when tested on the Honda/UCSD dataset. These experiments are performed by
considering all the frames of the video as an image set and limiting the set length
to 100 and 50 frames. The results show that the proposed method does not only
achieve the best performance but it also maintains consistency in its performance
for reduced set lengths.

Table 4: Performance evaluation of All Methods on Different Datasets

Methods Mobo YTC Kinect ETH PubFig COX FS

MSM FG’98 [54] 96.8±2.0 50.2±3.6 89.3±4.1 75.5±4.8 57.0±2.6 26.4±10.9 57.7±0.9
DCC TPAMI’07 [28] 88.9±2.5 51.4±5.0 92.5±2.0 91.8±3.7 34.9±7.7 43.3±12.1 57.9±4.4
MMD CVPR’08 [52] 92.5±2.9 54.0±3.7 93.9±2.3 77.5±5.0 36.2±6.9 54.9±10.3 72.5±4.5
MDA CVPR’09 [50] 81.0±12.3 55.1±4.6 93.5±3.6 77.3±5.5 34.3±6.4 73.1±10.4 79.2±3.5
AHISD CVPR’10 [5] 92.9±2.1 61.5±5.6 91.6±2.2 78.6±5.3 62.1±2.0 64.1±11.3 68.5±1.1
CHISD CVPR’10 [5] 96.5±1.2 60.4±6.0 92.7±1.9 79.5±5.3 64.8±2.1 63.1±10.4 71.2±1.2
GEDA CVPR’11 [15] 84.9±3.2 52.5±4.5 91.4±6.3 79.5±5.2 35.5±26.2 53.2±15.8 52.5±3.5
SANP TPAMI’12 [21] 97.6±0.9 65.6± 5.6 93.8± 3.1 77.8±7.3 80.4±2.5 66.2±13.4 69.7±1.7
CDL CVPR’12 [51] 90.0±4.4 56.4±5.3 94.6±1.0 77.8±4.2 51.1±4.0 56.1±16.3 66.1±1.3
MSSRC CVPR’13 [38] 97.5±0.9 59.4±5.7 95.5±2.3 90.5±3.1 85.6±2.8 69.4±15.7 81.2±2.1
SSDML ICCV’13 [58] 95.1±2.2 66.2±5.2 86.9±3.4 81.0±6.6 88.8±1.6 65.3±10.8 75.4±0.8
RNP FG’13 [55] 96.1±1.4 65.8±5.4 96.2±2.5 81.0±3.2 88.6±1.0 66.2±12.8 73.6±0.8
NLRM CVPR’14 [17] 97.9± 0.7 71.4±4.8 98.1±1.7 98.1±1.7 88.6±1.5 66.1±14.7 66.0±3.0
This Paper 98.3±0.7 77.4± 3.5 98.3±1.7 96.1±1.8 98.6±0.3 74.1±10.2 91.5±0.5

Average identification rates (percentage) and standard deviations on CMU/Mobo, YouTube Celebrities (YTC), Kinect,
ETH-80, PubFig, COX and FaceScurb (FS) datasets. The proposed method achieves the best performance on most of
these datasets with a significant performance boost on YTC, PubFig and FS datasets.
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Fig. 5: Cumulative Match Characteristic (CMC) curves on YTC, PubFig, COX and FS datasets. Figure best seen

in colors.
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(d) FaceScrub

Fig. 6: Receiver Operating Characteristics (ROC) curves on YTC, PubFig, COX and FS datasets. Figure best

seen in colors.
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Fig. 7: Equal Error Rates (EERs) of different methods on all datasets. Figure best seen in colors.

sentation (such as a subspace, the mean of set images

or an exemplar image) for all images of the set. Any

potential loss of information is therefore avoided by

retaining the images of the set in their original form.

Moreover, well-developed classification algorithms are

efficiently incorporated within the proposed framework

to optimally discriminate the class of the query image

set from the remaining classes. Furthermore, since the

proposed method provides a confidence level for its pre-

diction, the classification decisions from multiple clas-

sifiers can be fused to enhance the overall performance

of the method.

4.4 Still to video Face Recognition

We also validate our proposed approach for still-to-

video based face recognition which finds its usefulness

in numerous real-life applications such as face recogni-

tion from surveillance cameras. The only modification

required to adapt the proposed method to the case of

still to video face recognition is to perform more iter-

ations in steps 1-5 of the original algorithm. For this,

we enforce an upper limit of 10 iterations. Table 5 com-

pares our proposed method against a number of recent

works, which can be adapted to the case of still to video

based face recognition. These include the baseline Near-

est Neighbour (NN) Classifier, Neighbourhood Compo-

nent Analysis (NCA) [13], Information Theoretic Ma-
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chine Learning (ITML) [9], Local Fisher Discriminant

Analysis (LFDA) [45], Large Margin Nearest Neighbor

(LMNN) [53], Nearest Feature Classifiers (NFC) [8],

Hyperplane Distance Nearest Neighbor (HKNN) [48],

K-local Convex Distance Nearest Neighbors (CKNN),

Mahalanobis Distance (MD), Point to Set Distance Met-

ric Learning (PSDML) [58] and Learning Euclidean to

Riemannian Metric (LERM) [22]. Experiments are con-

ducted using COX still-to-video dataset. The results

in Table 5 illustrate the superior performance of our

method and its suitability for the challenging and im-

portant problem of still to video based face recognition

from surveillance imagery.

Table 5: Still to Video Face Recognition

Method Accuracy Method Accuracy

NNC 11.5 CKNN [48] 9.4
NCA [13] 42.8 MD 15.1
ITML [9] 24.9 PSDML [58] 15.6
LFDA [45] 29.2 HKNN [48] 7.0
LMNN [53] 40.8 LERM [23] 48.8
NFC [8] 12.7 This Paper 51.2

4.5 Robustness Analysis

In order to analyse the robustness of the proposed method

with respect to its different aspects, we conduct quan-

titative experimental evaluations. In this regards, the

following aspects are explored. i) number of images in

the gallery and the probe sets ii) number of images

in sets D1 & D2, and iii) number of enrolled subjects

in the gallery. These experimental evaluations and the

achieved results are discussed next.

(i) Size of Gallery and Probe Image Sets: We per-

form experiments on YouTube celebrities dataset by en-

forcing an upper limit on number of images in the sets.

Specifically, by keeping the size of the probe image sets

fixed, we first gradually reduce the number of images

in gallery sets from 250 to 8. We then keep the size of

the gallery image sets fixed, and gradually decrease the

size of the probe image sets. The achieved experimental

results for reduced gallery and probe sets are presented

in Fig 8 (a) and (b) respectively. The results suggest

that the performance of the proposed method is quite

robust to the size of the probe image sets. Reducing

the size of the probe image sets to as low as 8 images

achieves a classification accuracy of 72.1% (compared

to 77.4% for full size). Reducing the size of the gallery

image set beyond 25 images, however, does cause a no-

ticeable performance drop. The proposed method can

Table 6: Performance evaluation by changing the num-

ber of images in D1 and D2.

Images Performance Images Performance

0.5 ND1c
77.7± 3.8 3 ND1c

74.8± 3.5
1 ND1c

77.4± 3.5 4 ND1c
73.8± 3.3

1.5 ND1c
76.9± 3.8 5 ND1c

73.5± 3.3
2 ND1c

76.3± 3.5 6 ND1c
73.3± 3.3

2.5ND1c
75.7± 3.5 7 ND1c

73.2± 3.3

Originally, ND1c
=
⌈
Nq

k

⌉
images are sampled from

each class of the training data to from D1. Here,
we evaluate the method by changing the number
of these images from ND1c

to mND1c
where m =

{0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7}.

still achieve a performance of 61.4% when the gallery

set size is reduced to only 8 images.

(ii) Size of D1 and D2: The proposed method trains

a binary classifier between images of Xq and D1 which

is then evaluated on D2. D1 has ND1c
=
⌈
Nq

k

⌉
uniformly

sampled images from each class of the training data.

It also contains ND1c
miss-labelled images (which have

the same label as Xq). Increasing the size of D1 will

decrease the size of D2 and also increase the number

of miss-labelled images in D1. This will cause the per-

formance to drop. In order to quantitatively evaluate

the robustness of the proposed method against num-

ber of images in D1 and D2, we gradually increase

the number of images sampled from each class of the

training data to form D1 from ND1cto mND1c . Experi-

mental results on YouTube celebrities dataset for m =

{0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7} are presented in Table 6.

The results show that the performance of the method

only drops from 77.7% to 73.2% when there is a 14 fold

increase (from m = 0.5 to m = 7) in the number of im-

ages in D1. A possible reason for this performance drop

is the imbalance between Xq and D1 for larger values

of m. We also perform experiments by excluding the

miss-labelled images from D1. A classification accuracy

of 78.8 is achieved for m = 0. These evaluations sug-

gests robustness of the proposed method against num-

ber of images in D1 and D2. Although increasing the

size of D1 increases the number of miss-labelled images,

the overall proportion of these images stays the same

i. e. 1
k of all the images. For a large value of k (the num-

ber of enrolled subjects in the gallery), the proportion

of these images is too small to significantly impact the

performance of the proposed method.

(iii) Number of Enrolled Subjects: In our exper-

imental evaluations (Sec 4), the efficacy of the pro-

posed method has been demonstrated on a wide range

of datasets in which number of enrolled subjects vary
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Fig. 8: Classification performance on YouTube celebrities dataset for reduced number of images in the (a) gallery

and (b) probe sets.

All 200 100 50 25

Maximum Number of Images in the Gallery Set

0

10

20

30

40

50

60

70

80

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

%

Enrolled Subects vs Gallery Set Size

k=47
k=40
k=30
k=20
k=15

Fig. 9: Performance evaluation for different number of

enrolled subjects and maximum number of images in

the gallery.

from 20 to 1000. Furthermore, in the previous exper-

iment (Sec. 4.5 (ii)), it was shown that for a larger

value of k, the fraction of miss-labelled images in D1

( 1
k of all images) is small and does not significantly af-

fect the training of the binary classifier and the overall

performance of the proposed method. In this experi-

ment, we want to quantitatively evaluate the affect of

k (the number of enrolled subjects in the gallery) on

the performance of the proposed method. In this re-

gards, we perform experiments on YouTube celebrities

dataset for k = {47, 40, 30, 20, 15}. For each value of k,

we further do evaluations by considering different num-

ber of images in the gallery sets (full length, 200, 100,

50, 25). The experimental results presented in Fig. 9

suggest a gradual performance drop for a reduced num-

ber of enrolled subjects in the gallery. The performance

drop however is quite insignificant when the gallery sets

contain more images. The performance drop for lower

values of k is more pronounced when the gallery sets

contain fewer images.

4.6 Ablative Analysis

We conduct experiments on YouTube celebrities dataset

to study the contribution of the different components of

the proposed method towards its overall performance.

The following aspects are explored:

(i) Binary Classifiers: Experiments are performed

by considering different binary classifiers which include

linear SVM [10], non-linear SVM with Radial Basis

Function (RBF) kernel [6], non-linear SVM with Chi-

Square kernel [47] and random decision forests [4]. Ex-

perimental results in Table 7 show that the choice of

the binary classifier does not significantly impact the

performance. Although, for many classification tasks,

non-linear SVMs perform better compared with linear

SVMs, in our case, they show a comparable perfor-

mance. This can be due to strong discriminative feature

representation in terms of activations of a Convolution

Neural Network. CNN based features in combination

with a linear SVM have shown superior performance

for many challenging classification tasks [26, 43]. We,

therefore, select linear SVM because of its computa-

tional efficiency. We note that for linearly inseparable

data, linear SVM may perform poorly. In such a case,

any non-linear binary classifier can easily be employed

in conjunction with the proposed technique.
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Table 7: Performance evaluation for different choices of

binary classifiers

Classifier Accuracy

Linear SVM C1 74.2± 3.6
Linear SVM C2 73.3± 3.7
Non-Linear SVM RBF Kernel 74.1± 3.5
Non-Linear SVM Chi-Square Kernel 74.7± 3.5
Random Decision Forests 73.8± 3.6

Table 8: Performance evaluation for different feature

descriptors.

Features Dimensions Accuracy

LBPs 944 71.5± 3.8
LBPs (PCA Whitening) 400 74.6± 3.5
Gabor 4000 70.8± 3.7
Gabor (PCA Whitening) 400 73.8± 3.8
AlexNet 4096 78.5± 3.7
AlexNet (PCA Whitening) 400 77.4± 3.5
VGG-Face 4096 86.0± 3.4
VGG-Face (PCA Whitening) 400 84.3± 3.4

(ii) Feature Descriptors: Experiments are performed

on YouTube celebrities dataset by considering different

methods of encoding facial images. These include Local

Binary Patterns (LBPs) [37], Gabor features [56], acti-

vations of AlexNet [29] fine-tuned on BU4DFE dataset

[57] and activations of VGG-Face CNN model [39]. For

LBPs, each image is divided into 4× 4 non-overlapping

blocks and 59 dimensional histograms are extracted

from each block. Histograms from all 16 blocks are then

concatenated to get the final 944 dimensional feature
vector. For Gabor features, we generate a bank of 40

Gabor wavelet filters at five scales and eight orienta-

tions. An image is then convolved with these filters,

and the down sampled magnitude responses are con-

sidered as feature representation. For CNN models, we

consider the 4096 dimensional activations of the first

fully connected layer of the model as feature repre-

sentation of the input image. Experimental results in

Table 8 show that the learned feature representations

in terms of activations of CNN models perform sig-

nificantly better compared with LBPs and Gabor fea-

tures. We also evaluate these features in combination

with Principal Component Analysis (PCA) whitening.

The results show that PCA whitening achieves a per-

formance improvement for LBPs and Gabor features,

while a slight performance drop for learned features.

(iii) Number of Iterations: Fig 10 shows perfor-

mance evaluation for different number of maximum it-

erations of steps 1-5 of the proposed method. The re-

sults show that performing more iterations improves
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Fig. 10: Performance evaluation for different number

of iterations of steps 2-8 (Algorithm. 1) of the pro-

posed method. Considering the performance and re-

quired computational load, we select a total of five it-

erations as an optimal choice.

the robustness of our approach and results in a slightly

improved recognition performance. This, however, re-

quires more computational effort. A total of five itera-

tions is therefore a good trade off between recognition

performance and computational complexity.

(iv) Sampling Strategies: The results in Table 9

show that bootstrapped sampling introduces more ro-

bustness and enhances performance. Incorporating pose

based information during sampling further enhances

the performance of the proposed method (since most

of the images in the sampled set have the same pose

as the pose of the images of the query image set). By

doing so, the trained binary classifier learns to discrim-

inate between the images of the query set from the

others (rather than discriminating them based upon

their poses). A visual inspection of the failure cases re-

vealed that most of the miss-classifications happened

when the pose difference between most of the images of

the gallery and probe set is greater than 45◦.

(v) Ensemble Effect: The results in Table 9 show

that use of the two binary classifiers (see Sec 3.3) com-

plement each other and result in a performance boost.

Table 9: Ablative analysis for different sampling strate-

gies and ensemble of classifiers

Sampling Strategies Ensemble Effect

Uniform Random 74.6 C1 74.2
Bootstrapped 75.2 C2 73.3
Posebased 77.4 C1 and C2 77.4

Based on our empirical evaluations and ablative anal-

ysis on YTC dataset, we attribute the performance

achieved by our proposed method to the following rea-
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sons. The proposed method can naturally accommodate

fusion of information from multiple classifiers. This can

be a binary classifier trained multiple times for different

random samplings of the negative set. Further, it can

simultaneously fuse information from different types of

binary classifiers. Convolution Neural Networks based

learnt feature representations also achieve a significant

performance boost for the proposed method.

4.7 Timing Analysis

Table 10: Timing comparison on the YouTube celebri-

ties dataset

Method Train Test Method Train Test

MSM N/A 1.1 SANP N/A 22.4
DCC 27.9 0.2 CDL 549.6 7.2
MMD N/A 68.1 MSSRC N/A 54.2
MDA 7.2 0.1 SSDML 389.3 18.5
AHISD N/A 3.1 RNP N/A 1.4
CHISD N/A 5.3 Ours N/A 6.5

Time in seconds required for offline training and online
testing of one image set on YouTube celebrities dataset.
‘N/A’ means that the method does not perform any
offline training.

Table 10 lists the times (in seconds) for different

methods using the respective Matlab implementations

on a core i7 machine. Specifically, the time required for

the offline training and the time needed to test one im-

age set on the YouTube celebrities dataset are provided.

The reported time for our method corresponds to five it-

erations of steps 1-5 of our algorithm (see Sec. 3.2). For

MSM [54], AHISD [5], CHISD [5] and RNP [55], the re-

ported test time also includes the time required to com-

pute subspaces and projection matrices of the training

data. These can be computed offline. It takes approx-

imately 0.9 seconds to compute them for the training

data of YouTube celebrities dataset.

Based upon their computational requirements, we

can categorize the evaluated methods as online (which

do all computations at run time e.g., [5, 21, 38, 54, 55])

and offline (which do training component offline and

only testing is done at run time e.g., [28,50,51,55,58]).

Both of these categories of methods have their strengths

and limitations. A major strength of online methods is

their scalability. New classes can easily be added with-

out requiring retraining on the complete dataset. A ma-

jor limitation of online methods (including ours) is that

all the computation is done at run-time and compar-

atively more memory storage is required. In our im-

plementation, we noted that, on average, our method

requires approximately 450 MB of RAM to classify a

query image set on YouTube celebrities dataset. In com-

parison, offline methods are efficient at run time and

require less computational resources.

5 Conclusion

A new approach is introduced to efficiently extend well

known binary classifiers for multi-class image set clas-

sification. Compared with the popular one-vs-one and

one-vs-rest binary to multi-class strategies, the proposed

approach is very efficient as it trains fixed number of bi-

nary classifiers (one to five) and uses very few images

for training. The proposed approach can also simulta-

neously fuse information from different types of binary

classifiers, which further enhances its robustness and ac-

curacy. Extensive experiments have been performed to

validate the proposed approach for the tasks of video

based face recognition, still to video face recognition

and object recognition. The experimental results and

a comparison with the existing methods show that the

proposed method consistently achieves state of the art

performance.
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