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Transformers in Vision: A Survey
Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir,

Fahad Shahbaz Khan, and Mubarak Shah

Abstract—Astounding results from transformer models on natural language tasks have intrigued the vision community to study their
application to computer vision problems. This has led to exciting progress on a number of tasks while requiring minimal inductive
biases in the model design. This survey aims to provide a comprehensive overview of the transformer models in the computer vision
discipline and assumes little to no prior background in the field. We start with an introduction to fundamental concepts behind the
success of transformer models i.e., self-supervision and self-attention. Transformer architectures leverage self-attention mechanisms to
encode long-range dependencies in the input domain which makes them highly expressive. Since they assume minimal prior
knowledge about the structure of the problem, self-supervision using pretext tasks is applied to pre-train transformer models on
large-scale (unlabelled) datasets. The learned representations are then fine-tuned on the downstream tasks, typically leading to
excellent performance due to the generalization and expressivity of encoded features. We cover extensive applications of transformers
in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation),
generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing
(e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and
3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular
techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research
directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards
the application of transformer models in computer vision.

Index Terms—Self-attention, transformers, bidirectional encoders, deep neural networks, convolutional networks, self-supervision.
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1 INTRODUCTION

T RANSFORMER models [1] have recently demonstrated
exemplary performance on a broad range of language

tasks e.g., text classification, machine translation [2] and
question answering. Among these models, the most popular
ones include BERT (Bidirectional Encoder Representations
from Transformers) [3], GPT (Generative Pre-trained Trans-
former) v1-3 [4], [5], [6], RoBERTa (Robustly Optimized
BERT Pre-training) [7] and T5 (Text-to-Text Transfer Trans-
former) [8]. The profound impact of Transformer models has
become more clear with their scalability to very large-scale
models. As an example, the BERT-large [3] model with 340
million parameters was significantly outperformed by the
latest GPT-3 [6] model with 175 billion parameters.

The breakthroughs from Transformer networks in Nat-
ural Language Processing (NLP) domain has sparked great
interest in the computer vision community to adapt these
models for vision and multi-modal learning tasks. As a
result, Transformer models have been successfully used
for image recognition [9], [10], object detection [11], [12],
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segmentation [13], image super-resolution [14], video un-
derstanding [15], [16], image generation [17] and visual
question answering [18], [19], among several other use
cases [20], [21], [22], [23]. This survey aims to cover such
recent and exciting efforts in the computer vision domain,
providing a comprehensive reference to interested readers.

The main success factors for Transformers include (a)
self-supervision and (b) self-attention. The self-supervision on
large-scale datasets allows training complex models with
no manual annotation cost, thereby learning generalizable
representations that encode useful relationships between
the entities present in a given dataset. This is an important
feature since self-attention assumes minimal inductive biases
compared to other forms of deep learning models such as,
the convolutional and recurrent neural networks [24], [25],
[26]. The self-attention layers consider the broad context in
a given sequence by learning the relationships between the
token set elements (e.g., words in language or patches in
an image). In this survey, we first provide an introduction
to these salient concepts used in Transformer networks and
then elaborate on the specifics of recent vision transformers.

This paper provides a holistic overview of the trans-
former models developed for computer vision applications
and systematic comparison between the recent competing
approaches. Other literature reviews mainly focus on the
NLP domain [27], [28] or cover generic attention-based
approaches [27], [29]. By focusing on the newly emerging
area of visual transformers, we comprehensively organize
the recent approaches according to the intrinsic features
of self-attention and the investigated task. Our work also
elaborates on the design innovations proposed in recent
works over the conventional transformer architecture [1].
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Fig. 1: Statistics on the number of times keywords such as BERT, Self-Attention, and Transformers appear in the titles of
Peer-reviewed and arXiv papers over the past few years. The plots show consistent growth in recent literature. We cover
this progress in the computer vision domain.

Towards the later part, this manuscript details the key
practical advantages provided by different design choices
in the literature. This survey finally details open research
questions with an outlook towards the possible future work.

2 FOUNDATIONS

There exist two key ideas that have contributed towards the
development of transformer models. (a) The first one is self-
supervision, which is used to pre-train transformer models
on a large unlabeled corpus, subsequently fine-tuning them
to the target task with a small labeled dataset [3], [7],
[30]. (b) The second key idea is that of self-attention which
allows capturing ‘long-term’ information and dependencies
between sequence elements as compared to conventional
recurrent models that find it challenging to encode such
relationships. Below, we provide a brief tutorial on these
two ideas (Sec. 2.1, 2.2 and 2.3), along with a summary
of seminal Transformer networks (Sec. 2.4 and 2.5) where
these ideas have been applied. This background will help
us better understand the forthcoming Transformer based
models used in the computer vision domain (Sec. 3).

2.1 Self-Supervision
Self-supervised learning (SSL) is the core concept used
alongside the transformer models to learn from large-scale
unlabelled datasets. An extensive survey on SSL can be
found in [31], [32]. As nicely summarized by Y. LeCun [33],
the basic idea of SSL is to fill in the blanks, i.e., try to predict
the occluded data in images, future or past frames in tempo-
ral video sequences or predict a pretext task e.g., the amount
of rotation applied to inputs, the permutation applied to
image patches or the color of a grayscale image. Another
effective way to impose self-supervised constraints is via
contrastive learning. In this case, nuisance transformations
are used to create two types of modified versions of the same
image i.e., without changing the underlying class semantics
(e.g., image stylizing, cropping) and with semantic changes
(e.g., replacing an object with another in the same scene, or
changing the class with minor adversarial changes to the
image). Subsequently, the model is trained to be invariant to
the nuisance transformations and emphasize on modeling
minor changes that can alter semantic labels.

Self-supervised learning provides a promising learning
paradigm since it enables learning from a vast amount of
readily available non-annotated data. SSL is performed in
two stages: first, a model is trained to learn a meaningful
representation of the underlying data by solving a pretext
task. The pseudo-labels for the pretext task are automati-
cally generated (without requiring any expensive manual
annotations) based on data attributes and task definition. In
the second stage, the first-stage trained model is fine-tuned
on a downstream task using the labeled data. Examples of
downstream tasks include image classification [34], object
detection [11] and action recognition [16].

At the core of SSL is the pretext task definition. We can
therefore broadly categorize existing SSL methods based
upon their pretext tasks into generative approaches which
synthesize images or videos, context-based methods which
exploit the relationships between image patches or video
frames, and cross-modal methods which leverage from mul-
tiple data modalities. Examples of generative approaches
include conditional generation tasks such as image coloriza-
tion [35] (model is trained on RGB images, where inputs are
grey-scale and the model outputs their RGB counterparts),
image super-resolution [36], image in-painting [37], and
GANs based methods [38], [39]. The context-based pretext
methods solve problems such as a jigsaw puzzle [40], [41],
[42] on image patches, predict geometric transformation
such as rotation [34], [43], or verify temporal sequence of
video frames [44], [45], [46]. Cross-modal pretext methods
verify the correspondence of two input modalities e.g., audio
& video [47], [48] and RGB & flow [49].

2.2 Self-Attention
The self-attention mechanism is an integral component of
transformers, which explicitly models the interactions be-
tween all entities of a sequence for structured prediction
tasks. Basically, a self-attention layer updates each compo-
nent of a sequence by aggregating global information from
the complete input sequence.

Lets denote a sequence of n entities (x1,x2, · · ·xn) by
X ∈ Rn×d, where d is the embedding dimension to repre-
sent each entity. The goal of self-attention is to capture the
interaction amongst all n entities by encoding each entity
in terms of the global contextual information. This is done
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Fig. 2: Architecture of the Transformer Model [1].

by defining three learnable weight matrices to transform
Queries (WQ ∈ Rn×dq ), Keys (WK ∈ Rn×dk ) and Values
(WV ∈ Rn×dv ). The input sequence X is first projected onto
these weight matrices to get Q = XWQ, K = XWK and
V = XWV . The output Z ∈ Rn×dv of the self attention
layer is then given by,

Z = softmax

(
QKT√
dq

)
V.

For a given entity in the sequence, the self-attention basi-
cally computes the dot-product of the query with all keys,
which is then normalized using softmax operator to get the
attention scores. Each entity then becomes the weighted sum
of all entities in the sequence, where weights are given by
the attention scores.

Masked Self-Attention: The standard self-attention
layer attends to all entities. For the Transformer model [1]
which is trained to predict the next entity of the sequence,
the self-attention blocks used in the decoder are masked to
prevent attending to the subsequent future entities. This is
simply done by an element-wise multiplication operation
with a mask M ∈ Rn×n, where M is an upper-triangular
matrix. The masked self-attention is defined by,

softmax

(
QKT√
dq
◦M

)
,

where ◦ denotes Hadamard product. Basically, while pre-
dicting an entity in the sequence, the attention scores of the
future entities are set to zero in masked self-attention.

2.3 Multi-Head Attention
In order to encapsulate multiple complex relationships
amongst different positions in the sequence, the multi-head
attention comprises multiple self-attention blocks (8 in the
original Transformer model [1]). Each block has its own
set of learnable weight matrices {WQi ,WKi ,WVi}, where
i = 0 · · · 7. For input X, the output of the 8 self-attention
blocks in multi-head attention is then concatenated into a

single matrix [Z0,Z1, · · ·Z7] ∈ Rn×8dv and projected onto a
weight matrix W ∈ R8dv×d (see Fig. 2).

The main difference of self-attention with convolution
operation is that the weights are dynamically calculated
instead of static weights (that stay the same for any input) as
in the case of convolution. Further, self-attention is invariant
to permutations and changes in the number of input points.
As a result, it can easily operate on irregular inputs as op-
posed to standard convolution that requires grid structure.

2.4 Transformer Model
The architecture of the transformer model proposed in [1]
is shown in Fig. 2. It has an encoder-decoder structure. The
encoder consists of six identical layers, with each layer hav-
ing two sub-layers: a multi-head self-attention block, and a
simple position-wise fully connected feed-forward network.
Residual connections [50] alongside layer normalization [51]
are employed after each layer as in Fig. 2. Note that, dif-
ferent from regular convolutional networks where feature
aggregation and feature transformation are simultaneously
performed (e.g., with a convolution layer followed by a non-
linearity), these two steps are decoupled in the Transformer
model i.e., self-attention layer only performs aggregation
while the feed-forward layer performs transformation. Sim-
ilar to the encoder, the decoder in the Transformer model
comprises six identical layers. Each decoder layer has three
sub-layers, first two (multi-head self-attention, and feed-
forward) are similar to the encoder, while the third sub-
layer performs multi-head attention on the outputs of the
corresponding encoder layer, as shown in Fig. 2.

The original Transformer model in [1] was trained for
the Machine Translation task. The input to the encoder is
a sequence of words (sentence) in one language. Positional
encodings are added to the input sequence to capture the
relative position of each word in the sequence. Positional
encodings have the same dimensions as the input d = 512,
and can be learned or pre-defined e.g., by sine or cosine
functions. Being an auto-regressive model, the decoder of
the Transformer [1] uses previous predictions to output the
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next word in the sequence. The decoder, therefore, takes
inputs from the encoder as well as the previous outputs
to predict the next word of the sentence in the translated
language. To facilitate residual connections the output di-
mensions of all layers are kept the same i.e., d = 512.
The dimensions of query, key and value weight matrices
in multi-head attention are set to dq = 64, dk = 64, dv = 64.

2.5 Bidirectional Representations
The training strategy of the original Transformer model [1]
could only attend to the context on the left of a given word
in the sentence. This is limiting, since for most language
tasks, contextual information from both left and right sides
is important. Bidirectional Encoder Representations from
Transformers (BERT) [3] proposed to jointly encode the right
and left context in a sentence, to learn feature representation
for textual data in an unsupervised manner. To enable
bidirectional training, [3] basically introduced two pretext
tasks: Masked Language Model and Next Sentence Prediction.
The model pre-trained on these pretext tasks in an unsuper-
vised manner was then fine-tuned for the downstream task.
For this purpose, task-specific additional output module is
appended to the pre-trained model, and the full model is
fine-tuned end-to-end.

The network architecture of the base BERT [3] model is
based upon the original Transformer model in [1] and is
similar to GPT [4]. The core contribution of BERT [3] is the
pretext task definition, which enables bidirectional feature
encoding in an unsupervised manner. To this end, BERT
[3] proposed two strategies: (1) Masked Language Model
(MLM) - A fixed percentage (15%) of words in a sentence
are randomly masked and the model is trained to predict
these masked words using cross-entropy loss. In predicting
the masked words, the model learns to incorporate the
bidirectional context. (2) Next Sentence Prediction (NSP) -
Given a pair of sentences, the model predicts a binary label
i.e., whether the pair is valid from the original document or
not. The training data for this can easily be generated from
any monolingual text corpus. A pair of sentences A and B
is formed, such that B is the actual sentence (next to A) 50%
of the time, and B is a random sentence for other 50% of the
time. NSP enables the model to capture sentence-to-sentence
relationships which are crucial in many language modeling
tasks such as Question Answering and Natural Language
Inference (NLI).

3 TRANSFORMERS & SELF-ATTENTION IN VISION

We provide an overview of main themes followed in Trans-
formers designed for vision applications in Fig. 3. Exist-
ing frameworks generally apply global or local attention,
leverage CNN representations or utilize matrix factorization
to enhance design efficiency and use vectorized attention
models. We explain these research directions below in the
form of task-specific groups of approaches.

3.1 Transformers for Image Recognition
Convolution operation is the work-horse of the conven-
tional deep neural networks used in computer vision and
it brought breakthroughs such as solving complex image
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Fig. 3: A taxonomy of self-attention design space.

recognition tasks on high dimensional datasets like Im-
ageNet [52]. However, convolution also comes with its
shortcomings e.g., it operates on a fixed-sized window thus
unable to capture long-range dependencies such as arbitrary
relations between pixels in both spatial and time domains
in a given video. Furthermore, convolution filter weights
remain fixed after training so the operation cannot adapt
dynamically to any variation to the input. In this section, we
review methods that alleviate the above-mentioned issues in
conventional deep neural networks by using Self-attention
operations and Transformer networks (a specific form of
self-attention). There are two main design approaches to
self-attention. (a) Global self-attention which is not restricted
by the size of input features e.g., [53] introduces a layer
inspired from non-local means that applies attention to the
whole feature map while [54] reduces the computational
complexity of non-local operation [53] by designing sparse
attention maps. (b) Local self-attention tries to model re-
lation within a given neighborhood e.g., [55] proposed to
restrict the attention within a specific window around a
given pixel position to reduce the computational overhead.
Similarly, [53] further improved local self-attention such
that it can dynamically adapt its weight aggregation to
variations in the input data/features.

Recently, global self-attention has been successfully ap-
plied by using NLP Transformer encoder directly on image
patches [9], removing the need for handcrafted network
design. Transformer is data-hungry in nature e.g., a large-
scale dataset like ImageNet is not enough to train vision
transformer from scratch so [10] proposes to distill knowl-
edge from a CNN teacher to a student vision transformer
which allowed Transformer training on only ImageNet
without any additional data. Here, we describe key insights
from different methods based on local/global self-attention
including Transformers specifically designed to solve the
image recognition task.

3.1.1 Non-Local Neural Networks
This approach is inspired by non-local means operation
[56] which was mainly designed for image denoising. This
operation modifies a given pixel in a patch with a weighted
sum of other pixel values in an image. However, instead
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of considering a fixed-sized window around a pixel, it
selects distant pixels to contribute to the filter response
based on the similarity between the patches. By design, the
non-local operation models long-range dependencies in the
image space. Motivated by this, Wang et al. [57] proposed a
differentiable non-local operation for deep neural networks
to capture long-range dependencies both in both space
and time in a feed-forward fashion. Given a feature map,
their proposed operator [57] computes the response at a
position as a weighted sum of the features at all positions
in the feature map. This way, the non-local operation is
able to capture interactions between any two positions in
the feature map regardless of the distance between them.
Videos classification is an example of a task where long-
range interactions between pixels exist both in space and
time. Equipped with the capability to model long-range
interactions, [57] demonstrated the superiority of non-local
deep neural networks for more accurate video classification
on Kinetics dataset [58].

3.1.2 Criss-Cross Attention
Although the self-attention mechanism allows us to model
full-image contextual information, it is both memory and
compute intensive procedure. As shown in Fig. 4(a), in
order to encode global context for a given pixel location,
non-local block [57] computes a dense attention map (in
green). The non-local block [57] has a high complexity
of O(N2), where N denotes the number of input feature
maps. To reduce this computational burden, Huang et al.
[54] propose the criss-cross attention module that for each
pixel position generates a sparse attention map only on the
criss-cross path, as illustrated in Fig. 4(b). Further, by ap-
plying criss-cross attention recurrently, each pixel position
can capture context from all other pixels. Compared to non-
local block, the criss-cross uses 11× lesser GPU memory, and
has a complexity of O(2

√
N). State-of-the-art results are re-

ported [54] for the semantic and instance segmentation tasks
on several benchmark datasets including Cityscapes [59],
ADE20K [60], COCO [61], LIP [62] and CamVid [63].

3.1.3 Stand-Alone Self-Attention
As discussed above, convolutional layers possess transla-
tion equivariance but can not scale with a large receptive
field, therefore can not capture long-range interactions [55].
On the other hand, global attention [1] which attend to
all spatial locations of the input can be computationally
intensive and is preferred on down-sampled small images,
image patches [9] or augmenting the convolutional features
space [64]. Ramachandran et al. [55] proposed to replace
convolutional layers in deep neural networks with a local
self-attention layer which can be applied to small or large
inputs without increasing the computational cost. At a basic
level, the proposed self-attention layer [55] considers all
pixel positions in a specific window size around a given
pixel, compute queries, keys and value vectors for these
pixels, and then aggregates the spatial information within
this window. The value vectors are aggregated after pro-
jecting the softmax score of queries and keys. This process
is repeated for all given pixels and the response is concate-
nated to produce the output pixel. ResNet models with local
self-attention layer can solve ImageNet and COCO object

Fig. 4: The figure compares two different self-attention
approaches. (a) Non-local block [57], and (b) Criss-cross
attention module [54]. Image is from [54].

detection with fewer parameters as compared to ResNet
models based on convolutional layers [55].

3.1.4 Local Relation Networks

Another shortcoming of the convolutional operator comes
from the fact that after training, it applies fixed weights
regardless of any changes to the visual input. Hu et al. [53]
proposed to adaptively compose pixels in a local window.
They introduced a new differentiable layer (Fig. 5) that
adapts its weight aggregation based on the compositional
relations (similarity) between pixels/features within a lo-
cal window. Such adaptive weight aggregation introduces
geometric priors into the network which are important for
the recognition tasks [53]. Convolution is considered to be
a top-down operator as it remains fixed across positions
while a non-local operation such as introduced in [56] is
a bottom-up method as it aggregates input features over the
full image. The local relation layer belongs to the category
of bottom-up methods but it is restricted to a fixed window
size e.g.7x7 neighborhood.

Fig. 5: Local Relation Layer. It adapts weights based on the
relationships between features in a local window. Image is
from [53].
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3.1.5 Attention Augmented Convolutional Networks
Bello et al. [64] explore the possibility of employing self-
attention as an alternative to convolutional operators. They
propose to use the relative position encoding [65] in two
dimensions to develop a new self-attention mechanism that
maintains translation equivariance, which is a desirable
property for handling images. Although this self-attention
provides competitive results as a stand-alone computational
primitive, the best performance is obtained when used in
combination with the convolutional operations. Extensive
experiments show that attention augmentation leads to sys-
tematic performance improvements in image classification
and object detection for a variety of existing architectures.

3.1.6 Vectorized Self-Attention
Zhao et al. [72] note that a traditional convolution operator
performs feature aggregation and transformation jointly
(by applying a filter and then passing it through a non-
linearity). In contrast, they propose to perform feature ag-
gregation separately with self-attention followed by trans-
formation using an element-wise perceptron layer. To this
end, they propose two alternate strategies for feature aggre-
gation: (a) pairwise self-attention and (b) patch-wise self-
attention. The pairwise self-attention is permutation and
cardinality invariant operation, while the patch-wise self-
attention does not have such invariance properties (similar
to the convolution operator).

Both pairwise and patch-wise self-attentions are imple-
mented as a vector attention [72] that learns weights for both
the spatial and channel dimensions. This provides an alter-
nate approach for attention that is conventionally performed
using scalar weights (by taking a dot-product). The pair-
wise self-attention is a set operator that computes a vector
attention keeping in view the relationships of a particular
feature with its neighbors in a given local neighborhood. In
contrast, patch-wise self-attention is a generalization of the
convolution operator (not a set operator) and looks at all the
feature vectors in the local neighbourhood when deriving
the attention vectors. Authors show that with considerably
fewer parameters, self-attention networks (SAN) can beat
comparable baselines from ResNet family on the ImageNet
dataset. One key property of their approach is its robustness
against adversarial perturbations [73], [74] and generaliza-
tion to unseen transformations in the data. This behaviour is
due to the dynamic nature of attention that makes it difficult
for the adversary to calculate useful fooling directions.

3.1.7 Vision Transformer
Vision Transformer (ViT) [9] is the first work to show-
case how transformers can ‘altogether’ replace standard
convolutions in deep neural networks on large-scale com-
puter vision datasets. They applied the original transformer
model (with minimal changes compared to the version
used for NLP tasks) on a sequence of image ’patches’. The
transformer model was pre-trained on a large propriety
dataset of images collected by Google and later fine-tuned
to downstream recognition benchmarks e.g., ImageNet. This
is an important step since pre-training on a medium-range
dataset would not give state-of-the-art results with a ViT.
This is because the CNNs encode prior knowledge about

Fig. 6: Vectorized self-attention block in SAN. The vector-
based self-attention can be implemented as a pairwise or
a patch-wise operation. C denote the channel dimension,
the left branch calculates the attention weights α = γ(δ(x))
while the right branch transforms features using a linear
mapping β. r1 and r2 denote the factors by which both
branches reduce channel dimension for efficient processing.
Image is from [72].

the image domain (inductive biases e.g., translation equiv-
ariance) that reduces the need of data as compared to trans-
formers which must discover such knowledge rules from
very large-scale datasets. To this end, a 300 million image
JFT dataset [75] was used for pre-training that helped boost
the performance to the level of state of the art CNN models.
Notably, compared to the iGPT [17] model that also applied
transformers to full-sized images but performs training as a
generative task, ViT pre-trains the model with a supervised
classification task (although a self-supervision variant is also
explored which results in a less performance).

The main architecture of the model (Fig. 7) is very sim-
ilar to language transformers. Instead of a 1D sequence of
language embeddings, 2D images patches are flattened in a
vector form and fed to the transformer as a sequence. These
vectorized patches are then projected to a patch embedding
using a linear layer and position embedding is attached
with it to encode location information. Importantly, a [cls]
token (stands for classification) is appended at the beginning
of the input to the transformer. The output representation
corresponding to the first position is then used as the global
image representation for the image classification task.

3.1.8 Data-Efficient Image Transformers
The data-efficient image transformer (DeiT) [10] is the first
result in large-scale image classification, without utilizing
any external large-scale dataset (e.g., JFT in [9]), which
demonstrates the potential of transformers compared to
carefully tuned CNN designs. Since the transformer archi-
tecture does not assume prior knowledge about the image
structure as opposed to CNN design, it typically leads
to longer training times, and larger datasets are required
to train Transformer models. However, DeiT demonstrates
how transformers can be learned on mid-sized datasets (e.g.,
1.2 million examples compared to hundreds of millions used
in ViT [9]) in relatively shorter training episodes. Besides
using augmentation and regularization procedures common
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Task Input Data Type Label Type Method Design Highlights (focus on differences
with the standard form)

Loss

Image
Classification

2D Image Class labels ViT [9] Directly adopted NLP Transformer En-
coder for images, Mechanism to linearly
embed image patches with positional
embedding suitable for the Encoder.

Cross-entropy

Image
Classification

2D Image Class labels,
Soft CNN

output labels

DeiT [10] Transformer as s student while CNN as
a teacher, Distillation tokens to produce
estimated labels from teacher, Attention
between class and distillation tokens.

Cross-entropy,
Distillation loss

based on
KL-divergence

Object Detection 2D Image Class labels &
Bounding

Boxes

DETR [11] Linear projection layer to reduce CNN
feature dimension, Spatial positional
embedding added to each multi-head
self-attention layer of both encoder and
decoder. Object queries (output posi-
tional encoding) added to each multi-
head self-attention layer of decoder.

Hungarian loss
based on
bipartite
matching
between

predicted and
ground truths

Object Detection 2D Image Class labels &
Bounding

Boxes

D-DETR [12] Deformable Transformer consists of de-
formable attention layers to introduce
sparse priors in Transformers, Multi-
scale attention module.

Hungarian loss

Low Shot
Learning

2D Image Pretraining
without labels
and few-shot
learning with
Class labels

CT [22] Self-supervised pretraining, Query-
aligned class prototypes that provide
spatial correspondence between the
support-set images and query image.

Normalized
Cross-entropy

Image
Colorization

2D Image 2D Image ColTran [21] Conditional Row/column multi-head
attention layers, Progressive multi-scale
colorization scheme.

Negative
log-likelihood
of the images

Action
Recognition

Skeleton Action Classes ST-TR [66] Spatial and Temporal self-attention to
operates on graph data such as joints in
skeletons.

Cross-entropy

Super-resolution 2D Image 2D Image TTSR [14] Texture enhancing Transformer module,
Relevance embeddings to compute the
relevance between the low-resolution
and reference image.

Reconstruction
loss, Perceptual
loss defined on

pretrained
VGG19 features

Multi-Model
Learning

2D Images Captions, Class
labels, Object

tags

Oscar [67] Transformer layer to jointly process
triplet representation of image-text
[words, tags, features], Masked tokens
to represent text data.

Negative
log-likelihood

of masked
tokens,

Contrastive
binary

cross-entropy

3D Classifica-
tion/Segmentation

CAD models, 3D object
part segmentation

Object and
shape

categories

PT [68] Point Transformer block, Transition
down block to reduce cardinality of the
point set, Transition up for dense pre-
diction tasks.

Cross-entropy

3D Mesh
Reconstruction

2D Image 3D Mesh +
Human Pose

METRO [69] Progressive dimensionality reduction
across Transformer layers, Positional
Encoding with 3D joint and 3D vertex
coordinates, Masked vertex/joint mod-
eling.

L1 loss on
mesh vertices

and joints in 3D
and 2D

projection.

Vision and
Language

Navigation

Instruction text +
RGBD panorama +

Topological
Environment Map

Navigation
Plan

Chen et al. [70] Uni-modal encoders on language and
map inputs followed by a cross-modal
transformer, Trajectory position encod-
ings in the map encoder.

Cross-entropy
over nodes and
[stop] action

Referring Image
Segmentation

2D Image + Language
expression

Segmentation
mask

CMSA [13] Multimodal feature, Cross-modal self-
attention on multiple levels and their
fusion using learned gates.

Binary
cross-entropy

loss

Video
Classification

Audio-Visual Activity labels Lee et al. [71] Operates on real-valued audio-visual
signals instead of tokens, Contrastive
learning for pre-training, End-to-end
multimodal transformer learning.

Contrastive
InfoNCE loss

and Binary
cross-entropy

TABLE 1: A summary of key design choices adopted in different variants of transformers for a representative set of
computer vision applications. The main changes relate to specific loss function choices, architectural modifications, different
position embeddings and variations in input data modalities.



8

  

Fig. 7: An overview of vision transformer. The architecture
resembles transformers used in NLP domain and the image
patches are simply fed to the model after flattening. After
training, the feature obtained from the first position is used
for classification. Image obtained from [9].

in CNNs, the main contribution is a novel native distillation
approach for transformers.

The distillation process [76] uses a CNN as a teacher
model (RegNetY-16GF [77]) whose outputs are used to train
the transformer model. The outputs from the CNN aids the
transformer in efficiently figuring out useful representations
for input images. A distillation token is appended with
the input patch embeddings and the class token. The self-
attention layers operate on these tokens to learn their inter-
dependencies and output the learned class, patch, and dis-
tillation tokens. The network is trained with a cross-entropy
loss defined on the output class token and a distillation loss
to match the distillation token with the teacher output. Both
soft and hard label choices were explored for distillation,
where the hard distillation was found to perform better.
Interestingly, the learned class and distillation tokens do
not exhibit a high correlation indicating their complemen-
tary nature. The learned representations compare favorably
well against top-performing CNN architectures such as
EfficientNet [78] and also generalize well for a number of
downstream recognition tasks.

3.2 Transformers for Object Detection

Similar to image classification, transformer models are ap-
plied to a set of image features obtained from a backbone
CNN model to predict precise object bounding boxes and
their corresponding class labels. Below, the first approach
[11] attacks the detection problem for the first time using
transformer networks and the second approach [12] mainly
extends [11] to a multi-scale architecture and focuses on
improving computational efficiency.

3.2.1 Detection Transformer - DETR

DETR [11] treats object detection as a set prediction problem
using transformer models and a set loss function. The first
contribution (the transformer model) enables the prediction
of a set of objects (in a single go) and allows modeling
their relationships. The second contribution (the set loss)
allows bipartite matching between predictions and ground-
truth boxes. The main advantage of DETR is that it removes
the dependence on hand-crafted modules and operations,

Fig. 8: An overview of Detection Transformer (DETR) [11].
DETR treats the object detection task as a set prediction
problem and uses the transformer network to encode re-
lationships between set elements. Its simple design with
minimal problem-specific modifications can beat a carefully
built and popular Faster R-CNN model. Image from [11].

such as the RPN (region proposal network) and NMS (non-
maximal suppression) commonly used in object detection
[79], [80], [81], [82], [83]. In this manner, the dependence on
prior knowledge and careful engineering design is relaxed
for complex structured tasks like object detection.

Given spatial feature maps from the CNN backbone, the
encoder first flattens the spatial dimensions into a single
dimension, as illustrated in Fig. 8. This gives a sequence
of features d × n, where d is the feature dimension and
n = h×w with h,w being the height and width of the spatial
feature maps. These features are then encoded and decoded
using multi-head self-attention modules as proposed in
[1]. The main difference in the decoding stage is that all
boxes are predicted in parallel while [1] uses an RNN to
predict sequence elements one by one. Since the encoder and
decoder are permutation invariant, positional encodings are
used as object queries to generate different boxes. DETR
obtains performance comparable to the popular Faster R-
CNN model [79] which is an impressive feat given its simple
design. The DETR has also been extended to interesting
applications in other domains, e.g., Cell-DETR [84] extends
it for instance segmentation of biological cells. A dedicated
attention branch is added to obtain instance-wise segmen-
tations in addition box predictions that are enhanced with a
CNN decoder to generate accurate instance masks.

3.2.2 Deformable - DETR
The above-mentioned DETR [11] successfully combines con-
volutional networks with Transformers [1] to remove hand-
crafted design requirements and achieves an end-to-end
trainable object detection pipeline. However, it struggles
to detect small objects and suffers from slow convergence
and a relatively high computational cost [12]. DETR maps
images to features space before using the Transformer for
the relation modeling. Thus, the computational cost of self-
attention grows quadratically with the spatial size of the
feature map i.e.,O(H2W 2C), whereH andW represent the
height and width of the feature map. This inherently puts
a limitation on the use of multi-scale hierarchical features
[85] in DETR training framework which is ultimately impor-
tant to detect small objects. Furthermore, at the beginning
of training, the attention module simply projects uniform
attention to all the locations of the feature map and requires
a large number of training epochs to tune attention weights
to converge to meaningfully sparse locations. This approach
contributes to a slow convergence rate of DETR. To mitigate
the above-mentioned issues, [12] proposed a deformable
attention module to process the feature maps. Inspired
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from deformable convolutions [86], deformable attention
module [12] only attends to sparse set of elements from
the whole feature map regardless of its spatial size. This
further allows cross-scale aggregation of feature maps with
the help of multi-scale attention modules without increasing
the computational cost significantly. Deformable DETR not
only performs better but its training time also remains 10×
lower than the original DETR model [12].

3.3 Transformers for Segmentation
A dense prediction task like image segmentation into se-
mantic labels and object instances requires modeling rich
interactions between pixels. Here, we explain an axial self-
attention operation [87] that seeks to reduce the complexity
of self-attention and a cross-modal approach [13] that can
segment regions corresponding to a given language expres-
sion.

3.3.1 Axial-Attention for Panoptic Segmentation
Panoptic segmentation [88] aims at jointly solving the oth-
erwise distinct tasks of semantic segmentation and instance
segmentation by assigning each pixel of the image a se-
mantic label and an instance id. Global context can provide
useful cues to deal with such a complex visual understand-
ing task. Self-attention is effective at modeling long-range
contextual information, albeit applying it to large inputs
for a dense prediction task like panoptic segmentation is
prohibitively expensive. A naive solution is to apply self-
attention either to downsampled inputs or to limited re-
gions around each pixel [55]. Even after introducing these
constraints, the self-attention still has quadratic complexity
and sacrifices the global context, respectively.

To mitigate the aforementioned issues, Wang et al. [87]
propose the position-sensitive axial-attention where the 2D
self-attention mechanism is reformulated as two 1D axial-
attention layers that are applied to height-axis and width-
axis sequentially (see Fig. 9). The axial-attention is highly
compute efficient and enables models to capture the full-
image context. The effectiveness of axial-attention is demon-
strated by achieving state-of-the-art performance for the
panoptic segmentation task on COCO [61], Mapillary Vis-
tas [89], and Cityscapes [59] benchmarks and for the image
classification problem on ImageNet dataset [52].

Fig. 9: Axial attention module [87] that sequentially ap-
plies multi-head axial attention operations along height and
width axes. Image from [87].

3.3.2 CMSA: Cross-Modal Self-Attention
Cross-modal Self-attention (CMSA) [13] encodes long-range
multi-modal dependencies between linguistic and visual
domain features for referring image segmentation task. The

referring image segmentation problem aims to segment en-
tities in an image that are referred to by a language expres-
sion. To this end, a set of cross-modal features is obtained
by concatenating image features with each word embed-
ding and the spatial coordinate features. The self-attention
operates on this rich feature and generates attention over
the image corresponding to each word in the sentence. The
segmentation network performs self-attention at multiple
spatial levels and uses a gated multi-level fusion module to
refine segmentation masks via information exchange across
multi-resolution features. A binary CE loss is used to train
the overall model that achieves good improvements on
UNC [90], G-Ref [91] and ReferIt [92] datasets.

3.4 Transformers for Image Generation
Image generation tasks are interesting from the perspective
of generative modeling and because the representations
learned in an unsupervised manner can later be used for
down-stream tasks. Here, we summarize a transformer-
based architecture for image generation [93], conditional
generation [94] and high-resolution image generation [95]
tasks. We also cover a structured generation task where
scene objects are populated given a room layout [20].

3.4.1 Image GPT
Motivated by the success of transformer models in the
language domain, image GPT (iGPT) [93] demonstrated that
such models can also be used for image generation tasks,
and to learn strong features for downstream vision tasks.
Specifically, iGPT trains GPT v2 model [5] on flattened
image sequences (1D pixel arrays) and shows that it can
generate plausible image outputs without any external su-
pervision. The generated samples depict the model’s ability
to understand spatial relationships between pixels and high-
level attributes such as object classes, texture, and scale.

The features learned with iGPT’s unsupervised training
mechanism compete impressively against other unsuper-
vised approaches, achieving state-of-the-art performance on
CIFAR-10/100 [96] and STL [97] datasets while performing
close to the best results of SimCLR (a contrastive learning
approach) [98] on ImageNet dataset. This is an astounding
result, since the iGPT architecture is exactly the same as
used for language modeling tasks, and therefore it does not
incorporate any prior domain-specific knowledge. Notably,
the competing unsupervised CNN based solutions widely
adopt such priors in the form of architectural design, at-
tention mechanisms, loss functions, and regularization [99],
[100], [101], [102], [103]. However, on the downside, iGPT
has a high compute cost e.g., iGPT-L version has roughly
36× high training cost compared to MoCo [101] which is
a state of the art self-supervised feature learning approach.
For this reason, the training was generally limited to low-
resolution of ≤ 64 × 64, while convolutional architectures
can effectively learn from high-resolution inputs.

3.4.2 Image Transformer
Parmar et al. [94] develop an image generation model that
can sequentially predict each pixel of an output image given
its previously generated pixels. Their approach models the
joint distribution of the image pixels by factorizing it as a
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product of pixel-wise conditional distributions. Previously
developed auto-regressive models for this task, such as the
PixelCNN [104], suffer from a limited receptive field which
hinders in modeling long term relationships in an image e.g.,
part relationships or occlusions. Using self-attention phe-
nomenon, Image Transformers [94] enhance the receptive
field of neural networks without incurring a high compu-
tational cost (e.g., effective receptive field up to 256 pixels
was demonstrated to be achieved as compared to 25 pixels
of PixelCNN [104]). The generative pipeline was also tested
on conditional generation tasks e.g., image super-resolution,
image completion, and denoising.

The core methodology has two main highlights (see
Fig. 10), (a) the way key, query, and value triplets are used
in images, and (b) the use of self-attention with a rela-
tively high number of positions as compared to sentences
in the language (where self-attention has been previously
demonstrated to work successfully). For the first part, the
feature representations of previously generated pixels were
used to generate ‘value’ and ‘key’ embeddings, while the
current pixel’s feature embedding was used as a ‘query’.
Positional embeddings were used in the first layer to encode
location information. To solve the second problem, local
attention (1D and 2D variants) was used only in the local
neighborhood around the query position. For practical rea-
sons, a fixed memory block was defined for each respective
query, instead of dynamically calculating a different mem-
ory neighborhood for each pixel. A maximum likelihood
loss was applied for training the generative model.

Fig. 10: Self-attention block in Image Transformer [94] and
the operation performed in Local Self-Attention (example of
a 2D case is shown).

3.4.3 High-Resolution Image Synthesis
Transformers typically incur a high computational cost
when applied on high-dimensional sequences. To overcome
this limitation, Esser et al. [95] proposed to include in-
ductive biases (commonly used in the CNNs) alongside

Fig. 11: Diagram of the texture transformer module. Figure
is from [14].

transformers to improve their efficiency. Specifically, local
connectivity and spatial invariance biases inbuilt in the
CNN structure are leveraged by learning a rich dictionary of
visual patterns. The dictionary is learned using a Generative
Adversarial approach [38] that seeks to encode perceptually
sound image patches. A transformer is then used to learn
the long-range interactions between the dictionary items to
generate the outputs. In turn, they develop a conditional
image generation model capable of producing very high-
resolution images (up to megapixel range) using transform-
ers. This is the first work that demonstrates the application
of transformers to generate such high-resolution images.

3.4.4 SceneFormer

In the previous works on image generation [93], [94], [95],
image outputs are generally predicted directly by the model.
In contrast, [20] learns to generate parameters of 3D objects
to be placed in a given scene. Specifically, SceneFormer
[20] studies the 3D room layout conditioned scene gen-
eration task. Given the empty room shape, this approach
can propose new object configurations in the room while
maintaining realism. Remarkably, the model does not use
any appearance information and only learns to generate
new scenes by modeling the inter-object relationships using
self-attention in transformers. Similar to how a transformer
operates on a sentence, it is applied to a sequence of objects
to predict the next suitable object in a scene. Specifically,
the size, pose, location, and category of the next object is
predicted by the transformer model. A start token indicates
the initiation of inference and the number of output token
indicate the objects generated by the model in a sequence.
The authors also explore generating new scenes given a
textual description of the room layout. The independence
from the appearance makes the approach efficient, enabling
interactive scene generation.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 12: Images generated by DALL·E [105] from the following text prompts. (a) An armchair in the shape of an avocado. (b) A photo
of San Francisco’s golden gate bridge. Given a part of the image (in green box), DALL·E performs the image completion. (c) An emoji
of a baby penguin wearing a blue hat, red gloves, green shirt, and yellow pants. (d) An extreme close-up view of a capybara sitting in a field.
(e) A cross-section view of a pomegranate. (f) A penguin made of watermelon. (g) The exact same cat on the top as a sketch on the bottom.

3.5 Transformers for Text-to-Image Synthesis

The task of generating realistic images from text is in-
teresting and practically valuable (e.g., for artistic content
creation), but at the same time highly challenging. Prior
text-to-image synthesis approaches [106], [107], [108], [109]
are mostly based on GANs [38]. Although these methods
produce moderate results, they are far from being photo-
realistic. To this end, Ramesh et al. [105] propose DALL·E
which is a transformer model capable of generating high-
fidelity images from a given text description. The model is
named DALL·E using a portmanteau of the Spanish artist
Salvador Dalı́ and the Pixar’s blockbuster movie WALL·E.

DALL·E model has 12 billion parameters and it is trained
on a large set of text-image pairs taken from the internet.
Before training, images are first resized to 256×256 reso-
lution, and subsequently compressed to a 32×32 grid of
latent codes using a pre-trained discrete variational autoen-
coder [110], [111]. DALL·E takes as input a single stream of
1280 tokens (256 for the text and 1024 for the image), and
trained to generate all other tokens autoregressively (one
after another). It provides flexibility to generate images ei-
ther from scratch (Fig. 12a) or by extending existing images
(Fig. 12b), while staying faithful to the text caption.

The authors demonstrate the effectiveness of DALL·E by
creating images from text describing a wide variety of real
and fictional things. While generating images purely from
textural captions, DALL·E shows impressive performance
at controlling multiple objects and their attributes (Fig. 12c),
rendering certain viewpoint (Fig. 12d), capturing object’s
internal structure (Fig. 12e), and combining unrelated ob-
jects (Fig. 12f). Furthermore, DALL·E can perform image-to-
image translation (Fig. 12g) guided by the input text.

3.6 Transformers for Low-level Vision

In this section, we explain transformer models proposed
for low-level vision tasks such as super-resolution [14],
denoising [17] and image colorization [21].

3.6.1 Transformers for Super-Resolution
Image super-resolution (SR) aims to generate a high-
resolution (HR) image from its low-resolution (LR) version.
Recent years have seen major performance breakthroughs
for SR due to convolutional neural networks (CNNs). Prin-
cipally, the quality of super-resolved images generated by
CNNs is dependent on the choice of optimization objective.
On one hand, SR methods [112], [113], [114], [115], [116]

that are based on pixel-wise loss functions (e.g., L1, MSE,
etc.) yield impressive results in terms of image fidelity
metrics such as PSNR and SSIM. However, they struggle
to recover fine texture details and often produce images
that are overly-smooth and perceptually less pleasant. On
the other hand, perceptual SR approaches [36], [117], [118],
[119], [120], in addition to per-pixel loss, employ adversarial
loss [38] and perceptual loss [121] based on deep features
extracted from pre-trained CNNs. While these methods
generate images that are sharp, visually pleasant, and per-
ceptually plausible, they show a substantial decrease in re-
construction accuracy measured in PSNR/SSIM. Moreover,
the perceptual SR algorithms have a tendency to hallucinate
fake textures and cause artifacts. The above mentioned SR
approaches follow two distinct (but conflicting) research
directions: one maximizing the reconstruction accuracy and
the other maximizing the perceptual quality, but never both.

In order to alleviate the trade-off between perceptual
reproduction and accurate reproduction, Yang et al. [14]
propose a transformer network (TTSR) for super-resolution.
During training, TTSR uses paired LR-HR images, as well
as reference (Ref) images with similar content as of LR
images. TTSR learns to search relevant regions in the Ref
image and transfers rich textures to help super-resolving
the input LR image. The texture transformer module of
TTSR method, shown in Fig. 11, consists of four core com-
ponents: (1) Learnable texture extractor takes as input LR↑,
Ref↓↑, and Ref images, and generates texture features query
(Q), key (K), and value (V), respectively. Here, ↑ denotes
bicubic upsampling operation, and ↓↑ represents bicubic
down-sampling followed by an upsampling operation. (2)
Relevance embedding first unfolds Q and K into patches and
then computes the similarity of each patch in Q with each
patch in K in order to generate hard and soft attention maps.
(3) Hard-attention transfers HR texture features from V to (LR
features) Q using the hard attention map. (4) Soft-attention
further enhances relevant features while suppressing less
relevant ones by using the soft-attention map.

3.6.2 Transformers for Image Processing Tasks

State-of-the-art algorithms developed for high-level com-
puter vision tasks such as object detection and semantic
segmentation often employ backbone networks that are pre-
trained on large-scale datasets e.g., ImageNet. In contrast,
algorithms for low-level vision tasks such as image denois-
ing, super-resolution, and deraining are directly trained on
task-specific data, thereby suffer from the following limita-
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Fig. 13: The overall architecture of Image Processing Trans-
former (IPT) used for denoising and deraining tasks. Figure
is from [17].

tions. First, the number of images available in task-specific
datasets is small (e.g., the commonly used DIV2K dataset for
image super-resolution contains only 2000 images). Second,
the model trained for one image processing task does not
adapt well to other related tasks.

Chen et al. [17] proposed a pre-trained model based
on transformer architecture, named as Image Processing
Transformer (IPT). It is capable of performing various image
restoration tasks such as super-resolution, denoising, and
deraining. As shown in Fig. 13, the overall architecture of
IPT consists of multi-heads and multi-tails to deal with
different tasks separately, and a shared encoder-decoder
transformer body. Since exploiting transformers at full po-
tential requires training on large-scale data, Chen et al. [17]
take the clean (ground-truth) images from the ImageNet
benchmark and synthesize their degraded versions for dif-
ferent tasks. For example, bicubic interpolation is used for
generating low-resolution images, additive white Gaussian
noise is added to prepare noisy data, and hand-crafted
rain streaks are applied to obtain rainy images. In total, 10
million images are used to pre-train the IPT model. During
training, each task-specific head takes as input a degraded
image and generates visual features. These feature maps are
divided into small crops and subsequently flattened before
feeding them to the transformer encoder. The architecture of
the encoder is the same as that of the original transformer
model [1]. The outputs of the encoder along with the task-
specific embeddings are given as input to the transformer
decoder. The features from the decoder output are reshaped
and passed to the multi-tail that yields restored images. The
IPT model is optimized with L1 loss. Experimental results
show that the pre-trained IPT model, when fine-tuned for a
specific low-level vision task, can provide significant perfor-
mance gains over the state-of-the-art methods [115], [122],
[123].

3.6.3 Colorization Transformer
Given a grayscale image, colorization seeks to produce the
corresponding colorized sample. It is a one-to-many task as
for a given grayscale input, there exist many possibilities
in the colorized output space. The challenging nature of
this task requires probabilistic models capable of produc-
ing multiple colorized output samples. Colorization Trans-
former [21] is a probabilistic model based on conditional
attention mechanism [124]. It divides the image colorization

task into three sub-problems (Fig. 14) and proposes to solve
each task sequentially by a different transformer network.
The authors first train a transformer network to map a
low-resolution grey-scale image to a 3-bit low-resolution
colored image. Low-resolution images in turn allow training
of larger models. The 3-bit low-resolution colored image
is then upsampled to an 8-bit RGB sample by another
transformer network in the second stage of training. Finally,
a third stage transformer is trained to increase the spatial
resolution of the 8-bit RGB sample produced by the second-
stage transformer. Self-attention used in the colorization
transformer is based on row/column attention layers intro-
duced in [124]. These layers capture the interaction between
each pixel of an input image while being computation-
ally less costly. The row-wise attention layer applies self-
attention to all pixels in a given row, while the column-wise
attention layer considers pixels only in a given column of
an image. This work [21] is the first successful application
of transformers trained to colorize grey-scale images at high
(256×256) resolution.

Fig. 14: Colorization Transformer is a probabilistic model
that breaks down the image colorization problem into three
sub-tasks and trains separate transformer models for each.
Image is from [21].

3.7 Transformers for Multi-Modal Tasks
Transformer models have also been extensively used for
vision-language tasks such as visual question answering
(VQA) [129], visual commonsense reasoning (VSR) [130],
cross-modal retrieval [131] and image captioning [132]. Sev-
eral works in this direction target effective vision-language
pre-training (VLP) on large-scale multi-modal datasets to
learn generic representations that effectively encode cross-
modality relationships (e.g., grounding semantic attributes
of a person in a given image). These representations can then
be transferred to downstream tasks, often obtaining state
of the art results. Such models generally apply the vanilla
multi-layer transformer [1] with multi-modal inputs and
don’t introduce fundamental changes to the core attention
block. However, their main distinction is in the configura-
tion of transformers and the loss functions (see Fig. 15).

3.7.1 ViLBERT: Vision and Language BERT
Vision and Language BERT was the first extension of the
BERT model to the multi-modal domain. The goal was to
learn representations that can jointly model images and
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Fig. 15: An overview of Transformer models used for multi-modal tasks in computer vision. The transformer designs in this
category can be grouped into single-stream (UNITER [125], OSCAR [67], VideoBERT [15], Unicoder-VL [126], VisualBERT
[127] and VL-BERT [19]) and dual-stream architectures (LXMERT [18], ViLBERT [128] and PEMT [71]). A key distinction
between models is the choice of loss functions.

natural language. For this purpose, ViLBERT developed a
two-stream architecture where each stream is dedicated to
model the vision or language inputs. The architecture of
both parallel streams is a series of transformer blocks similar
to the BERT model. Subsequently, co-attentional transformer
layers are applied to learn cross-modal relationships. The co-
attentional framework is very simple. Query, key, and value
matrices are computed for each modality in the standard
way [1] and then key-value pairs for one modality are
passed on to the other modality’s attention head.

ViLBERT applies VLP on a set of proxy tasks defined on
the Conceptual Concepts dataset (with 3.3M images with
weak captions) and later fine-tune the model on down-
stream tasks such as VQA. The pre-training phase oper-
ates in a self-supervised manner, i.e., pretext tasks are cre-
ated without manual labeling on the large-scale unlabelled
dataset. These pretext tasks include predicting whether the
text and image inputs are related and predicting the seman-
tics of masked image regions and textual inputs (e.g., similar
to reconstructing masked words in text in the BERT model
[3]). This way, the model learns the inherent structure in
the data during pre-training and also models cross-domain
associations. With evaluations on several tasks, [15] demon-
strated that a two-stream model can perform better than a
single-stream model that uses shared parameters to model
both language and vision domains [15].

3.7.2 LXMERT
Similar to ViLBERT [128], Learning Cross-Modality Encoder
Representations from Transformers (LXMERT) [18] also uses
a two-stream architecture based on BERT framework. The
main difference lies in the object-relationship encoder that is
used to model the visual features instead of simple image-
level features used in ViLBERT. The information in two
streams is then fused across modalities using cross-attention
blocks similar to [128].

Compared to two pre-texts tasks used for VLP in [128],
LXMERT uses five pre-training tasks including masked
object and language prediction, cross-modality matching,
and visual question answering. The pre-trained model is
fine-tuned on the VQA task, however, a high similarity
between pre-training and fine-tuned tasks raises questions
on the generalizability of the learned representations to new
tasks. To this end, the authors conducted generalization
experiments on Visual Reasoning for Real (NLVR) task [133]
demonstrating impressive improvements on novel tasks.

3.7.3 VisualBERT
Different from two-stream networks like ViLBERT [128]
and LXMERT [18], VisualBERT [127] uses a single stack
of transformers to model both the domains (images and
text). The input sequence of text (e.g., caption) and the
visual features corresponding to the object proposals are
fed to the transformer that automatically discovers relations
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between the two domains. Notably, VisualBERT architec-
ture is somewhat similar to VideoBERT [15] (explained in
Sec. 3.8), but instead of only focusing on cooking videos,
VisualBERT evaluates on various visual-linguistic tasks (e.g.,
VCR, NLVR, VQA, and visual grounding).

The VisualBERT model first applies task-agnostic pre-
training using two objectives. The first objective simply
attempts to predict missing text tokens using the image
features and remaining textual tokens. The second objec-
tive attempts to differentiate between the true and false
caption of a given image. After task-agnostic pre-training,
the authors propose to perform task-specific pre-training to
bridge the domain gap before the final fine-tuning to the
downstream task.

3.7.4 VL-BERT
Su et al. [19] propose a multi-modal pre-training approach to
learn features that are generalizable to multi-modal down-
stream tasks such as Visual Commonsense Reasoning and
Visual Question Answering. This endeavor requires ade-
quately aligning the visual and linguistic cues so that an
effective composite representation is learned. To the end,
[19] builds on the BERT model and inputs both the visual
and language features. The language features correspond
to the token in the input sentence and the visual features
correspond to the region of interest (RoI) from the input
image (obtained via a standard Faster R-CNN). Specifically,
the model is pre-trained on both the visual-lingual dataset
(Conceptual Captions [134]) as well as the language-only
datasets (e.g., Wikipedia). The loss function is identical to
BERT, where the model is trained to predict the masked
out words or visual ROIs. In contrary to other works such
as UNITER [125], VL-BERT claims that the visual-linguistic
matching tasks are not useful during pre-training, which is
in contrast to evidence from later efforts [126]. Their results
on several multi-modal tasks show the benefit of such pre-
training over the language-only pre-training (e.g., in BERT).

3.7.5 Unicoder-VL
Universal Encoder for Vision and Language (Unicoder-VL)
[126] learns multi-modal representations using large-scale
image-caption datasets. The language and image inputs are
fed to a single transformer model (with multiple succes-
sive encoders) to learn joint embeddings. To this end, they
use masked word prediction, masked object classification,
and visual-linguistic matching as self-supervision tasks dur-
ing pre-training. Notably, the visual-linguistic matching is
carried out only at the global level (i.e., image-sentence
alignment). The model is evaluated on downstream tasks of
image-text retrieval, zero-shot learning, and visual common-
sense reasoning where it performs better than the previous
models such as ViLBERT [128] and VisualBERT [127]. This
shows the significance of rich self-supervised tasks and ad-
vocates for a unified transformer architecture to learn multi-
modal feature representations in a common framework.

Unified Vision-Language Pre-training

3.7.6 UNITER
Universal image-text representation (UNITER) [125] is also
a multi-modal feature learning approach via pre-training

on four large-scale visual-linguistic datasets (MS-COCO
[61], Visual Genome [135], Conceptual Captions [134] and
SBU Captions [136]). The learned representations have been
shown to transfer well on downstream tasks such as VQA,
Multi-modal retrieval, Visual Commonsense reasoning, and
NLVR. In order to emphasize on learning the relationships
between visual and language domains, they specifically
design pre-training tasks to predict masked visual or text
region conditioned on the other domain input, and align
language and visual inputs on both the global (image-text)
and local (word-region) levels. These tasks are beside the
conventional masked language modeling task used in BERT
and explicitly include fine-grained word-region alignment
alongside conditional masking of inputs that were not con-
sidered in the earlier works such as VL-BERT [19], Visual-
BERT [127], Vilbert [128] and Unicoder-VL [126]. Com-
mon to the other approaches, they adopt the transformer
architecture proposed in BERT that operates on both the
visual and language embeddings. In contrast to applying
independent transformers to the language and visual inputs
(as in ViLBERT [128] and LXMERT [18]), UNITER adopts a
single transformer applied to the textual and image inputs
like [19], [126], [127].

3.7.7 Oscar: Object-Semantics Aligned Pre-Training

VisualBert [127], Uniter [125], VL-BERT [19], VilBERT [128],
Unicoder-VL [126] models for VLP concatenate image and
text features and leave it on to the self-attention to automat-
ically discover cross-modal relationships. This can compli-
cate the visual grounding of semantic concepts in an image.
To address this problem, Oscar [67] first uses an object
detector to obtain object tags (labels), subsequently using
these tags as a mechanism to align relevant visual features
with the semantic domain information. The motivation is
that the textual content generally pertains to major objects
in the image, therefore by explicitly adding those image
labels in the input, visual features can be better attended.
Similar to BERT [3], Oscar uses a Masked Token Loss for
VLP. Specifically, different tokens in the textual input and
image tags are randomly masked and the model’s job is to
predict the missing token. This forces it to learn the relation-
ship of the missing token with the contextual information
given as visual and semantic features. Further, it also uses
a contrastive loss that discriminates between the original
and noisy/fake image-tag pairs. The representations thus
learned are fine-tuned on VQA, cross-modality retrieval,
natural language reasoning, and image captioning tasks to
obtain better performances compared to VLP methods that
do not use object tags.

3.7.8 Vokenization

Tan and Bansal [137] introduce the concept of ‘vokens’ (im-
ages related to language tokens extracted from sentences).
The vokens (visualized tokens) provide visual supervision
to the language model to learn better features. The motiva-
tion is that humans learn languages by correlating visual in-
formation with semantic concepts. In a similar spirit to other
self-supervised language representation learning methods
[3], [128], they learn representations by defining an auxiliary
task of voken-prediction task.
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Since the existing datasets encode limited visually
grounded tokens, they propose a vokenization method to
map language tokens to visual vokens. The approach uses
language-based retrieval for such a mapping and transfers
a model trained on a small labeled dataset (MS-COCO) to a
large dataset (Wikipedia). Furthermore, it was ensured that
the sentence-wide context is considered to obtain the token-
voken mapping. The resulting model trained using gener-
ated tokens outperform the state of the art BERT model on a
diverse set of NLP tasks. In this sense, the proposed model
does not evaluate vision tasks, however, uses vision as a
useful grounding cue to train the language model, hence we
include it in the multi-modal representation learning group.

Fig. 16: Visualized tokens (Vokens) [137]: A language model
is visually supervised using closely related images that leads
to better feature representations from the pretrained model.
Image from [137].

3.7.9 Vision-and-Language Navigation

This task aims to predict a navigation plan on a map based
on the vision and language inputs. Self-attention based
transformer networks were used earlier in [138], [139] for
the visual and language navigation (VLN). These works first
pre-trained a cross-modal transformer network using self-
supervision on vision and language pairs and subsequently
fine-tune on the specific VLN tasks. While these works
learn attention between image region and language, Chen
et al. [70] propose to learn cross-modal attention between
language inputs and spatial topological maps. The topo-
logical maps represent an agent’s environment as a graph
whose nodes denote places and the edges denote their
connectivity. Given the topological map and natural lan-
guage inputs, a VLN task using the transformer model bears
resemblance to sequence prediction in NLP. Specifically, at
each time instance, the cross-modal transformer predicts
a single node of the topological map in the navigation
plan. The individual language and map encodings are first
processed using uni-modal encoders and later a cross-modal
encoder (similar to LXMERT [18]) is applied to aggregate
information across modalities. To denote positions in the
map, a learned trajectory position encoding is appended
with the map features. Based on this transformer setup, [70]
reports a full navigation system that can freely explore the
environment and intelligently plan its actions.

3.8 Video Understanding
Audio-visual data in the form of videos is abundantly avail-
able. However, the prevalent approaches generally learn
representations on short-length videos (up to a few sec-
onds long), that allow them to encode only short-range
dependencies [1], [26]. Long-range dependency modeling
is desirable in various multi-modal learning tasks such as
activity recognition [58], [140], [141]. Below, we explain
recent approaches that seek to resolve this challenge using
the expressivity of transformer networks.

3.8.1 VideoBERT: Joint Video and Language Modeling
The VideoBERT [15] model leverages transformer networks
and the strength of self-supervised learning to learn effec-
tive multi-modal representations. Specifically, VideoBERT
uses the prediction of masked visual and linguistic tokens
as a pretext task in self-supervised learning. This allows
modeling high-level semantics and long-range temporal
dependencies, important for video understanding tasks.
Given a video, they convert speech to text using off-the-
shelf speech recognition systems and apply vector quanti-
zation (clustering) to obtain visual features from pre-trained
video classification models. The BERT model is then directly
applied to these concatenated sequences of language and
visual tokens to learn their joint distribution.

The model can be trained with only-text, video-only, and
video+text domains. The resulting model showcases inter-
esting capabilities for cross-modality predictions such as
video generation from a given textual input (e.g., captions or
cooking recipe) and (video-based) future forecasting given
a video token. The video+text model uses a visual-linguistic
alignment task to learn cross-modality relationships. The
definition of this pre-text task is simple, given the latent
state of the [cls] token, the task is to predict whether the
sentence is temporally aligned with the sequence of visual
tokens. Further, the learned representations are shown to be
very useful for downstream tasks such as action classifica-
tion, zero-shot classification, and video captioning.

3.8.2 Masked Transformer
Zhou et al. [142] study the dense video captioning problem
using transformers. This problem setting requires gener-
ating language descriptions for all events occurring in a
video. The previous works on this problem generally op-
erate sequentially i.e., first detect events and then generate
captions in separate sub-blocks. The proposed unified trans-
former network learns a single model to tackle both tasks
jointly, thereby seamlessly integrating the multi-modal tasks
of event detection and captioning. First, a video encoder
is used to obtain frame-wise representations followed by
two decoder blocks focused on proposing the video events
and the captions. Since untrimmed videos are considered,
a masking network is used in the captioning decoder to
focus on describing a single event proposal. Remarkably,
[142] was the first approach to target dense video captioning
using non-recurrent models and used self-attention in the
encoder(applied on CNN derived features) to model broad
range context between video frames. Experiments on Activ-
ityNet Captions [143] and YouCookII [144] datasets showed
good improvements over previous recurrent network and
two-stage based approaches.
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3.8.3 Parameter Efficient Multi-Modal Transformers

Lee et al. [71] note that the multi-modal representation
learning approaches like VideoBERT [15] and ViLBERT [128]
generally keep the language processing part fixed to a pre-
trained model (e.g., BERT [3]) to reduce training complex-
ity. Alternatively, for the first time in the literature, they
propose to learn an end-to-end multi-modal bidirectional
transformer model on audio-visual data from unlabeled
videos. First, short-term (e.g., 1-3 seconds) video dynamics
are encoded using CNNs, followed by a modality-specific
transformer (audio/visual) that can model long-term de-
pendencies (e.g., 30 seconds). A multi-modal transformer is
then applied to the modality-specific transformer outputs
to exchange information across visual-linguistic domains.
However, learning such a model in a naive form would
incur huge memory requirements. To reduce parametric
complexity, the parameters are shared across layers within
each transformer based on a low-rank approximation that
leads to as high as 80% parameter reduction.

The transformer is trained using a contrastive learn-
ing approach based on a content-aware negative sampling
method. Specifically, the model uses the features obtained
from CNNs learned during the training phase to select
negative samples that are visually similar to the positive
instances. This work also compares various fusion strategies
adopted in earlier works such as early (VideoBERT [15]
and VL-BERT [19]), mid-level (ViL-BERT [128] and LXMERT
[18]) and late fusion mechanisms and shows that the mid-
level fusion is the optimal choice. The proposed model
is pre-trained on Kinetics-700 [140] dataset and later fine-
tuned on downstream video classification tasks such as
short video classification on UCF101 [145], audio classifi-
cation on ESC50 [146] and long-term action recognition on
Charades [147] and Kinetics-Sounds [48] datasets.

3.8.4 Video Action Transformer

Girdhar et al. [16] use a variant of transformer architecture to
aggregate contextual cues in a video relevant to a particular
person. They demonstrate such contextual information to
be useful for action classification and localization. Initially,
the model uses a Faster-RCNN [79] style processing where a
backbone model generate features that are forwarded to the
Region Proposal Network to obtain object proposals. Then
RoI pooling is applied to generate object-specific features.
Multi-head self-attention [1] is then applied on top of the
object features as a cascade of self-attention layers. In each
transformer unit, a particular person feature is treated as
the ‘query’ (Q), while the features from the neighboring
video clip are used as ‘key’ (K) and ‘value’ (V). The location
information is explicitly encoded in the input feature map
from which K, V and Q are derived, thus incorporating
the positional information in the self-attention. For a given
400 × 400 × 64 video clip, the key and value tensors are
16 × 25 × 25 × 128 in size while the query is vector is
128 dimensional. Although this work uses only RGB stream,
the use of additional modalities like optical flow and audio
signal (as in competing video analysis works) would further
increase the computational complexity. Further, the trans-
former model was found to be sub-optimal for action local-
ization, perhaps due to its tendency to incorporate global

information. Therefore, an important research question is
how to achieve the right trade-off between the global and
local context for problems that demand precise delineation
(e.g., action localization and segmentation).

3.8.5 Skeleton-Based Action Recognition
Human action recognition based on skeleton representation
requires models that can understand relationships between
different joints of a body in a given frame as well as
between different frames of a video. Plizzari et al. [66]
proposed a two-stream Transformer network to model such
relationships. They introduced spatial self-attention (SSA)
for relation modeling between different body-joints, while
temporal self-attention (TSA) to capture long-range inter-
frame dependencies. They first used a small residual net-
work to extract features from skeleton data and then used
SSA and TSA modules to process those feature maps. SSA
models the relations between different body parts by finding
the correlation between each pair of joints independently,
while TSA focuses on how features of a certain joint change
between frames along the temporal dimension. Joints can
be thought of as bag-of-words and the purpose of SSA is to
discover relationships among the surrounding joints in the
same way as the Transformer relates different words in a
phrase. On the other hand, TSA finds long-range relations
between frames, similarly to how relations among phrases
are built in NLP. The two streamed spatial-temporal Trans-
former network achieve state-of-the-art results on NTU-
RGB+D 60 [148] and NTU-RGB+D 120 [149] datasets.

Fig. 17: Spatial/Temporal Attention for Skeleton Data Rep-
resentations. Relationships between body-joints and inter-
frame dependencies are modeled using two dedicated self-
attention modules. Figure is from [66].

3.9 Transformers in Low-shot Learning

In the few-shot learning settings, a support set is provided
at the inference to adapt to a novel set of categories. Trans-
former models have been used to learn set-to-set mappings
on this support set [23] or learn the spatial relationships
between a given input query and support set images [22].
We elaborate on these approaches below.

3.9.1 Cross-Transformer
Doersch et al. [22] explore the utility of self-supervision and
transformer architectures for cases where distribution mis-
match exists between training and evaluation phases. They
specifically consider the few-shot fine-grained classification
problem, where a model is first trained on a set of base
classes and later during the evaluation, it must adapt to
novel classes using their few labeled examples (support set).
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Cross-transformer is evaluated on Meta-dataset [150],
which is a huge dataset comprising of 10 distinct datasets
(including ImageNet, MS-COCO, etc.). The dataset encap-
sulates the challenging scenario where a learner must adapt
to new classes and novel domains during evaluation. The
transformer architecture in this case is used to relate a given
query image with the few-examples available in the support
set. To this end, the transformer finds spatially similar
regions in the query and support set images, and the cor-
responding features are then used to obtain class decisions
for the query. The queries in the transformer architecture
are derived from the grid features obtained using the query
image. Similarly, grid features from the support images are
used to construct keys and values which are in turn used
to derive attended outputs. This approach, besides a con-
trastive self-supervision based training mechanism, leads to
the best performance on the challenging Meta-dataset.

3.9.2 FEAT: Few-Shot Embedding Adaptation
Ye et al. [23] propose to adapt the few-shot embeddings
learned on the base classes to the few-shot target classes
during inference using a transformer module. This leads to
task-specific embeddings that perform better on the discrim-
inative tasks such as few-shot classification. While many
other set-to-set functions are also evaluated, such as Graph
convolutional networks [151], Bidirectional LSTMs [26] and
DeepSets [152], the best performance is achieved with the
transformer-based mapping. This is attributed to the better
contextualization, task interpolation and extrapolation ca-
pability of transformers and their permutation invariance
while maintaining a relatively lower parameter complexity.
The transformer architecture used in this work follows the
standard approach [1]. The embeddings are adapted using a
contrastive loss function for preserving discriminative prop-
erties. The resulting model achieves strong performance on
inductive, transductive, and generalized FSL tasks.

Fig. 18: An overview of Few-shot Embedding Adaptation
with Transformer (FEAT [23]). The set-to-set function found
most suitable for the few-shot learning task was a trans-
former module. Image from [23].

3.10 Transformers for Clustering
Clustering is a fundamental operation in unsupervised
learning that aims to discover structure in the data by
grouping similar data points together. It has numerous
applications such as data visualization and interpretation,
anomaly detection, and open-set categorization. Neural net-
works have been developed for set prediction problems

[152], [153], however, the setpoints are processed individ-
ually which can lose information about inter-point relation-
ships. Recent works employ transformers that operate on
set inputs called the Set transformers (ST) [154] for amortized
clustering. Amortized clustering is a challenging problem
that seeks to learn a parametric function that can map an
input set of points to their corresponding cluster centers.
Lee et al. [154] propose to learn such a mapping function
using a transformer architecture comprising of multi-head
self-attention blocks [1].

The transformer model is permutation invariant by de-
sign and allows encoding both pair-wise and higher-order
relationships between the input points. However, a full
transformer would lead to a high computational cost of
O(n2) in each self-attention layer, where n is the number of
points in the set. ST reduces this cost to O(mn) by using an
Induced Self-Attention Block that uses a low-rank projection
(H ∈ Rm) to allow operating on large sets. The model
was trained to learn optimal parameters that maximize the
likelihood of a mixture of Gaussians (MoGs). Thus MoG pa-
rameters are estimated by the ST given a set of data points.
Beyond amortized clustering, ST was also evaluated on
related set-transformation tasks including counting unique
elements in an input set, set anomaly detection, and point-
cloud classification. More recently, [155] improves [154] by
taking a sequential approach to cluster generation, thereby
allowing assignment to a variable number of clusters.

3.11 Transformers for 3D Analysis
Given the irregular (variable number of points) and permu-
tation invariant nature of 3D point cloud representations,
transformers provide a nice mechanism to encode rich rela-
tionships between the individual data points [68], [69], [156].

3.11.1 Point Transformer
Zhao et al. [68] study the self-attention based transformer
architecture for 3D point cloud processing. Self-attention
being a set-operator is ideally suited for processing point
clouds, a 3D data representation that demands invariance to
number of points and their permutations. The authors study
three problems in the 3D domain namely, object classifica-
tion, semantic segmentation, and object part segmentation.
The main contribution is a point transformer layer that
applies self-attention in the local neighborhood of 3D points.

The proposed point transformer layer builds on vec-
torized self-attention network (SAN) [72] where attention
weights are represented with vectors. Furthermore, a posi-
tional encoding δ is added both to the attention vector and
transformed features (value vectors) to represent location
information. The point transformer layer is sandwiched
between two linear layers to create a point transformer block
that is stacked multiple times in the developed network
architecture. Their design also included transition down/up
blocks to reduce/increase the number of points in the input
(in a typical encoding-decoding pipeline style). The result-
ing architecture delivers state-of-the-art performance on the
3D classification and segmentation tasks.

3.11.2 Point-Cloud Transformer
The point cloud transformer (PCT) [156] also utilizes the
permutation invariance property of transformers and is a
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Fig. 19: Point transformer layer [68] based on vectorized
self-attention [72]. δ denotes a position encoding, ψ, φ, α are
point-wise transformations and γ is a mapping function.
Image from [68].

parallel work to [68]. However, compared to [68], it is more
directly based on the conventional transformer architecture
[1]. The key modifications include a 3D coordinate-based
position encoding, an offset attention module, and a neigh-
bor embedding that encodes local 3D structure in point-
clouds. Specifically, the offset attention layer calculates the
difference between the self-attended features and the input
features using element-wise subtraction. The local neighbor
embedding simply finds self-attention relationships among
a group of points instead of individual 3D points. The
experiments are reported on 3D shape classification, normal
estimation and segmentation tasks on ModelNet40 [157] and
ShapeNet [158] datasets.

3.11.3 Pose and Mesh Reconstruction

The Mesh Transformer (METRO) [69] model targets 3D hu-
man pose and mesh reconstruction from a single 2D image.
A key challenge here is to faithfully learn the non-local in-
teractions between body-joints and mesh vertices (e.g., hand
and foot). The expressivity of transformer network is used to
jointly model vertex to vertex relationships in a mesh as well
as the vertex to body-joint relationships. The self-attention
mechanism can attend to any combination of vertices in the
mesh, thereby encoding non-local relationships.

The multi-layer transformer architecture sequentially
performs dimensionality reduction to map the 2D image to
3D mesh. Position encoding is performed using the 3D coor-
dinates (x,y,z) of each vertex and each body-joint. Similar to
masked language modeling in NLP, METRO uses masked
vertex modeling (MVM) which randomly masks some per-
centage of input queries (see Fig. 20). The transformer is
tasked with regressing all the joints and vertices which
helps encode inter-dependencies between them. METRO
obtains state-of-the-art results on human mesh reconstruc-
tion on two publicly available datasets (Human3.6M [159]
and 3DPW [160]). Since the approach does not depends
on a parametric mesh model, it generalizes well to other
reconstruction tasks such as 3D hand reconstruction [161].
Overall, this is the first effort to employ transformers for 3D
human reconstruction tasks and leads to fairly good results.

4 OPEN PROBLEMS & FUTURE DIRECTIONS

4.1 High Computational Cost

As discussed in Sec. 1, transformer models have high
parametric complexity. This results in high training and
inference cost, both in terms of computational time and
resources required for processing. As an example, the BERT
[3] basic model (with 109 million parameters) took around
1.89 peta-flop days1 for training, while the latest GPT3 [6]
model (175 billion parameters) took around 3640 peta-flop
days for training (a staggering ∼1925x increase). This comes
with a huge price tag, e.g., according to one estimate [166],
GPT3 training might have cost OpenAI around 4.6 million
USD. Additionally, these large-scale models require aggres-
sive compression techniques (e.g., distillation) to make their
inference feasible for real-world settings.

In the language domain, recent works focus on reducing
the high complexity of transformer models (basically arising
from the self-attention mechanism [1] where a token’s rep-
resentation is updated by considering all tokens from the
previous layer). For example, [167], [168] explore selective
or sparse attention to previous layer tokens which updating
each next layer token. Linformer [30] reduces complexity of
standard self-attention operation from O(n2) to O(n) (both
in time and memory requirements). The main idea is to
show that a low-rank matrix is sufficient to model the self-
attention mechanism. The Reformer model [169] employed
locally-sensitive hashing (LSH) to minimize the complexity
of self-attention from O(n2) to O(nlog(n)).

Vyas et al. [170] developed an efficient cluster attention
approach to deal with large input sequences that approx-
imates the original self-attention. They propose a cluster
attention approach that groups queries into clusters and
then computes attention between cluster centers (instead
of attention between all the queries that leads to quadratic
complexity). The main idea is that the queries close in the
Euclidean space should have similar attention distributions.
With a fixed number of clusters, this intuition helps reduce
the quadratic complexity to linear complexity of O(nc)
with respect to the input sequence length n (where c is
the number of clusters). We refer readers to [28] for a nice
literature survey on efficient transformers in NLP.

Similar to the NLP domain, computer vision models
also suffer from the high computational cost of transformer
models. For example, image generators that are based on
sequence-based transformers (e.g., iGPT) have a high com-
pute cost limiting their applicability to high-resolution in-
puts. In future, it is interesting to explore how such models
can be extended to high-dimensional cases e.g., using a
multi-scale transformer design with a somewhat local context
modeling.

4.2 High Data Cost

Since transformer architectures do not inherently encode
inductive biases (prior knowledge) to deal with visual
data, they typically require large amounts of training data
during pre-training to figure out the underlying modality-
specific rules. For example, a CNN has inbuilt translation

1. A peta-flop day is measure of computation and equals to perform-
ing 1015 neural net operations per second for one complete day.
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Task Method Metric Dataset Performance Highlights Limitations

Image
Classifica-

tion

ViT [9]
ICLR’21

Top-1 Acc. IN 88.55 a) First application of Transformer
(global self-attention) directly on
image patches, b) Convolution-free
network architecture, c) Outper-
forms CNN models such as ResNet.

a) Requires training on large-scale
data e.g., 300-Million images, b)
Requires careful transfer learning
to the new task, c) Requires large
model with 632-Million parameters
to achieve SOTA results.

DeiT [10]
arXiv’20

Top-1 Acc. IN 83.10 a) Successfully trains Transformer
on ImageNet only, b) Introduces
attention-based distillation method.
c) Produces competitive perfor-
mance with small (86-Million pa-
rameters) Transformers.

a) Requires access to pretrained
CNN based teacher model thus per-
formance depends on the quality of
the teacher model.

Low-Shot
Learning

CT [22]
NeurIPS’20

Top-1 Acc. IN
COCO

62.25
60.35

a) Self-supervised pre-training
mechanism that does not need
manual labels, b) Dynamic
inference using Transformer
achieving stat-of-the-art results.

Proposed algorithm is limited in its
capacity to perform on datasets that
lack spatial details such as texture.

Object
Detection

DETR [11]
ECCV’20

AP COCO 44.9 a) Use of Transformer allows end-
to-end training pipeline for object
detection, b) Removes the need for
hand-crafted post-processing steps.

a) Performs poorly on small objects,
b) Requires long training time to
converge.

D-DETR [12]
ICLR’21

AP COCO 43.8 a) Achieves better performance on
small objects than DETR [11], b)
Faster convergence than DETR [11]

Obtain SOTA results with 52.3 AP
but with two stage detector design
and test time augmentations.

Image
Coloriza-

tion

ColTran [21]
ICLR’21

FID IN 19.71 a) First successful application of
Transformer to image colorization,
b) Achieves SOTA FID score.

a) Lacks end-to-end training, b)
limited to images of size 256×256.

Action
Recogni-

tion

ST-TR [66]
arXiv’20

Top-1 Acc. NTU
60/120

94.0/84.7 a) Successfully applies Transformer
to model relations between body
joints both in spatial and temporal
domain, b) Achieves SOTA results.

Proposed Transformers do not pro-
cess joints directly rather operate on
features extracted by a CNN, thus
the overall model is based on hand-
crafted design.

Super-
Resolution

TTSR [14]
CVPR’20

PSNR/
SSIM

CUFED5
Sun80
Urban100
Manga109

27.1 / 0.8
30.0 / 0.81
25.9 / 0.78
30.1 / 0.91

a) Achieves state-of-the-art super-
resolution by using attention, b)
Novel Transformer inspired archi-
tectures that can process multi-scale
features.

a) Proposed Transformer does not
process images directly but features
extracted by a convolution based
network, b) Model with large num-
ber of trainable parameters, and c)
Compute intensive.

Multi-
Model

Learning

ViLBERT
[128]
NeurIPS’19

Acc./
mAP (R@1)

VQA [129]/
Retrieval
[162]

70.6/ 58.2
a) Proposed Transformer architec-
ture can combine text and visual
information to understand inter-
task dependencies, b) Achieves pre-
training on unlabelled dataset.

a) Requires large amount of data
for pre-training, b) Requires fine
tuning to the new task.

Oscar [67]
ECCV’20

Acc./
mAP (R@1)

VQA [163]/
COCO 80.37/57.5 a) Exploit novel supervisory signal

via object tags to achieve text and
image alignment, b) Achieves state-
of-the-art results.

Requires extra supervision through
pre-trained object detectors thus
performance is dependent on the
quality of object detectors.

UNITER
[125]
ECCV’20

Acc./
Avg.
(R@1/5/10)

VQA [129]/
Flickr30K
[164]

72.47/83.72
Learns fine-grained relation align-
ment between text and images

Requires large multi-task datasets
for Transformer training which lead
to high computational cost.

3D
Analysis

Point Trans-
former [68]
arXiv’20

Top-1 Acc.
IoU

ModelNet40
[157]

92.8
85.9

a) Transformer based attention ca-
pable to process unordered and un-
structured point sets, b) Permuta-
tion invariant architecture.

a) Only moderate improvements
over previous SOTA, b) Large num-
ber of trainable parameters around
6× higher than PointNet++ [165].

METRO [69]
arXiv’20

MPJPE
PA-MPJPE
MPVE

3DPW
[160]

77.1
47.9
88.2

a) Does not depend on parametric
mesh models so easily extendable
to different objects, b) Achieves
SOTA results using Transformers.

Dependent on hand-crafted net-
work design.

TABLE 2: Highlights of advantages and limitations of different Transformers based methods in different Tasks. (IN:
ImageNet, CT: Cross Transformers, AP: Average Precision, mAP: mean AP, IoU: Intersection over Union, FID: Fréchet
inception distance, MPJPE: Mean Per Joint Position Error, MPVE: Mean Per Vertex Error).
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Fig. 20: Mesh transformer architecture. The joint and vertex queries are appended with positional embeddings and passed
through multiple self-attention layers to jointly regress 3D coordinates of joints and mesh vertices. Figure is from [69].

invariance, weight sharing, and partial scale invariance
due to pooling operations or multi-scale processing blocks.
However, a transformer network needs to figure out these
image-specific properties on its own by looking at a large
number of examples. Similarly, relationships between video
frames need to be discovered automatically by the self-
attention mechanism by looking at a large database of video
sequences. This results in longer training times, a significant
increase in computational requirements, and large datasets
for processing. For example, the ViT [9] model requires hun-
dreds of millions of image examples to obtain a decent per-
formance on the ImageNet benchmark dataset. The question
of learning a transformer in a data-efficient manner is an
open research problem and recent works report encouraging
steps towards its resolution (e.g., DeiT [10] uses a distillation
approach to achieve data efficiency).

4.3 Need for Novel Designs

We note that most of the existing works focused on vision
tasks tend to directly apply transformer models on com-
puter vision problems. These include architectures designed
for image recognition [9], video understanding [15] and es-
pecially multi-modal processing [128]. Although the initial
results from these simple applications are quite encouraging
and motivate us to look further into the strengths of self-
attention and self-supervised learning, current architectures
may still remain better tailored for language problems (with
a sequence structure) and need further intuitions to make
them more efficient for visual inputs. For example, vector
attention from [72] is a nice work in this direction which
attempts to specifically tailor self-attention operation for
visual inputs. One may argue that the architectures like
transformer models should remain generic to be directly
applicable across domains, we notice that the high com-
putational and time cost for training such models on self-
supervised tasks demands novel design strategies to make
their training more affordable on vision problems.

4.4 Interpretability of Transformers

Given the strong performance of transformer architectures,
it is interesting and critical to interpret their decisions,
e.g., by visualizing relevant regions in an image for a
given classification decision. The main challenge is that
the attention originating in each layer, gets inter-mixed
in the subsequent layers in a complex manner, making
it difficult to visualize the relative contribution of input
tokens towards final predictions. This is an open problem,
however, some recent works [171], [172], [173] target en-
hanced interpretability of transformers and report encour-
aging results. Attention roll-out and attention flow methods
were proposed in [172] to estimate the accurate attentions.
However, this method functions in an ad-hoc manner and
makes simplistic assumptions e.g., input tokens are linearly
combined using attention weights across the layers. Chefer
et al. [173] note that the attention scores obtained directly via
the self-attention process (encoding relationships between
tokens) or reassignments in [172] do not provide an op-
timal solution. As an alternative, they propose to assign
and propagate relevancy scores in the transformer network
such that the sum of relevancy is constant throughout
the network. Their design can handle both the positive
and negative attributions experienced in the self-attention
layer. The proposed framework has an added advantage of
being able to provide class-specific visualizations. Further
progress in this direction can help in better understanding
transformer models, diagnosing any erroneous behaviors
and biases in the decision process. It can also help us design
novel architectures that can help us avoid any biases.

4.5 Hardware Efficient Designs

Large-scale Transformer networks can have intensive power
and computation requirements, hindering their deployment
on edge devices and resource-constrained environments
such as internet-of-things (IoT) platforms. Some recent ef-
forts have been reported to compress and accelerate NLP
models on embedded systems such as FPGAs [174]. Li et
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al. [174] used an enhanced block-circulant matrix-based rep-
resentation to compress NLP models and proposed a new
Field Programmable Gate Array (FPGA) architecture design
to efficiently manage resources for high throughput and low
latency. They could achieve 27x, 3x and 81x improvements
in performance (throughput measured in FPS), reduced
power consumption, and energy efficiency relative a CPU
for RoBERTa model [7]. Towards this goal, [175] proposed to
design Hardware-Aware Transformers (HAT) using neural
architecture search strategies [176], [177], [178]. Specifically,
a SuperTransformer model is first trained for performance
approximation which can estimate a model’s performance
without fully training it. This model comprises the largest
possible model in the search space while sharing weights
between common parts. Eventually, an evolutionary search
is performed considering the hardware latency constraints
to find a suitable SubTransformer model for a target hard-
ware platform (e.g., IoT device, GPU, CPU). However, such
hardware efficient designs are currently lacking for the
vision transformers to enable their seamless deployment
in resource-constrained devices. Further, the search cost of
the evolutionary algorithms remains significant with the
associated impact of CO2 emissions on the environment.

4.6 Is self-supervision the answer?
In cases, where training data is available with dense labels,
an interesting question to consider is whether the pre-
training process leveraging rich labels on a small dataset
speedup its learning. This question has been explored in
Virtex [179], a model that seeks to learn strong visual
representations using dense textual annotations (e.g., image
captions). Since, the captions encode information about
objects present in an image, their relationships, actions and
attributes, they can provide better supervision to learn more
generalizable and transferable representations. Particularly,
they showed that a model trained with a visual backbone
followed by a bidirectional language model (forward and
backward transformers) [3] to predict captions, can learn
strong features on MS-COCO dataset in an unsupervised
manner. When these features are transferred to the Ima-
geNet model, they perform better or equally-well compared
to the unsupervised/supervised features learned directly
on the ImageNet dataset. In future, it will be interesting
to explore how transformer models can be used with self-
supervised training on densely annotated datasets to trans-
fer well in novel unseen conditions at inference.

5 CONCLUSION

Attention has played a key role in delivering efficient
and accurate computer vision systems, while simultane-
ously providing insights into the function of deep neu-
ral networks. This survey reviews the self-attention ap-
proaches and specifically focuses on the transformer and bi-
directional encoding architectures that are built on the prin-
ciple of self-attention. We first cover fundamental concepts
pertaining to self-attention architectures and later provide
an in-depth analysis of competing approaches for a broad
range of computer vision applications. Specifically, we in-
clude state of the art self-attention models for image recog-
nition, object detection, semantic and instance segmentation,

video analysis and classification, visual question answering,
visual commonsense reasoning, image captioning, vision-
language navigation, clustering, few-shot learning, and 3D
data analysis. We systematically highlight the key strengths
and limitations of the existing methods and particularly
elaborate on the important future research directions. With
its specific focus on computer vision tasks, this survey pro-
vides a unique view of the recent progress in self-attention
and transformer-based methods. We hope this effort will
drive further interest in the vision community to leverage
the potential of transformer models and improve on their
current limitations e.g., reducing their carbon footprint.
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