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Abstract

Incremental life-long learning is a main challenge towards the long-standing goal
of Artificial General Intelligence. In real-life settings, learning tasks arrive in a
sequence and machine learning models must continually learn to increment already
acquired knowledge. Existing incremental learning approaches, fall well below the
state-of-the-art cumulative models that use all training classes at once. In this paper,
we propose a random path selection algorithm, called RPS-Net, that progressively
chooses optimal paths for the new tasks while encouraging parameter sharing.
Since the reuse of previous paths enables forward knowledge transfer, our approach
requires a considerably lower computational overhead. As an added novelty, the
proposed model integrates knowledge distillation and retrospection along with the
path selection strategy to overcome catastrophic forgetting. In order to maintain
an equilibrium between previous and newly acquired knowledge, we propose a
simple controller to dynamically balance the model plasticity. Through extensive
experiments, we demonstrate that the proposed method surpasses the state-of-the-
art performance on incremental learning and by utilizing parallel computation this
method can run in constant time with nearly the same efficiency as a conventional
deep convolutional neural network.

1 Introduction

The ability to incrementally learn novel tasks and acquire new knowledge is necessary for life-long
machine learning. Deep neural networks suffer from ‘catastrophic forgetting’ [18], a phenomenon
that occurs when a network is sequentially trained on a series of tasks and the learning acquired
on new tasks interferes with the previously learned concepts. As an example, in a typical transfer
learning scenario, when a model pre-trained on a source task is adapted to another task by fine-tuning
its weights, its performance significantly degrades on the source task whose weights are overridden
by the newly learned parameters [13]. It is, therefore, necessary to develop continual learning models
capable of incrementally adding newly available classes without the need to retrain models from
scratch using all previous class-sets (a cumulative setting). .

An ideal incremental learning model must meet the following criterion. (a) As a model is trained
on new tasks, it is desirable to maintain its performance on the old ones, thus avoiding catastrophic
forgetting. (b) The knowledge acquired on old tasks should help in accelerating the learning on new
tasks (a.k.a forward transfer) and vice versa. (c) As the class-incremental learning progresses, the
network must share and reuse the previously tuned parameters to realize a bounded computational
complexity and memory footprint, (d) At all learning phases, the model must maintain a tight
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equilibrium between the existing knowledge base and newly presented information (stability-plasticity
dilemma).

Despite several attempts, existing incremental learning models partially address the above mentioned
requirements. For example, [16] employs a distillation loss to preserve knowledge across multiple
tasks but requires prior knowledge about the task corresponding to a test sample during inference. An
incremental classifier and representation learning approach [21] jointly uses distillation and prototype
rehearsal but retrains the complete network for new tasks, thus compromising model stability. The
progressive network [22] lacks scalability as it grows paths linearly (and parameters quadratically)
with the number of tasks. The elastic weight consolidation scheme [15] computes synaptic importance
offline using Fisher information metric thus restricting its scalability and while it works well for
permutation tasks, its performance suffers on class-incremental learning [12].

Here, we argue that the most important characteristic of a true incremental learner is to maintain the
right trade-off between ‘stability’ (leading to intransigence) and ‘plasticity’ (resulting in forgetting).
We achieve this requisite via a dynamic path selection approach, called RPS-Net, that proceeds with
random candidate paths and discovers the optimal one for a given task. Once a task is learned, we
fix the parameters associated with it, that can only be shared by future tasks. To complement the
previously learned representations, we propose a stacked residual design that focuses on learning
the supplementary features suitable for new tasks. Besides, our learning scheme leverages exemplar-
based retrospection and introduces an explicit controller module to maintain the equilibrium between
stability and plasticity for all tasks. During training, our approach always operates with a constant
parameter budget that at max equals to a conventional linear model (e.g., resent [6]). Furthermore,
it can be straightforwardly parallelized during both train and test stages. With these novelties, our
approach obtains state-of-the-art class-incremental learning results, surpassing the previous best
model [21] by 7.38% and 10.64% on CIFAR-100 and ImageNet datasets, respectively.

Our main contributions are:

• A random path selection approach that provides faster convergence through path sharing
and reuse.

• The residual learning framework that incrementally learns residual paths which allows
network reuse and accelerate the learning process resulting in faster training.

• Ours is a hybrid approach that combines the respective strengths of knowledge distillation
(via regularization), retrospection (via exemplar replay) and dynamic architecture selection
methodologies to deliver a strong incremental learning performance.

• A novel controller that guides the plasticity of the network to maintain an equilibrium
between the previously learned knowledge and the newly presented tasks.

2 Related Work

The catastrophic interference problem was first noted to hinder the learning of connectionist networks
by [18]. This highlights the stability-plasticity dilemma in neural networks [1] i.e., a rigid and stable
model will not be able to learn new concepts while an easily adaptable model is susceptible to forget
old concepts due to major parameter changes. The existing continual learning schemes can be divided
into a broad set of three categories: (a) regularization schemes, (b) memory based retrospection and
replay, and (c) dynamic sub-network training and expansion.

A major trend in continual learning research has been on proposing novel regularization schemes
to avoid catastrophic forgetting by controlling the plasticity of network weights. [16] proposed a
knowledge distillation loss [7] which forces the network to retain its predictions on the old tasks.
Kirkpatrick et al. [15] proposed an elastic weight consolidation mechanism that quantifies the
relevance of parameters to a particular task and correspondingly adjusts the learning rate. In a similar
spirit, [28] designed intelligent synapses which measure their relevance to a particular task and
consequently adjust plasticity during learning to minimize interference with old tasks.

Rebuffi et al. [21] proposed a distillation scheme intertwined with exemplar-based retrospection to
retain the previously learned concepts. [8] considered a similar approach for cross-dataset continual
learning [16]. The combination of episodic (short-term) and semantic (long-term) memory was
studied in [11, 5, 10] to perform memory consolidation and retrieval. Particularly, [10, 11] help avoid
explicitly storing exemplars in the memory, rather using a generative process to recall memories.
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Figure 1: An overview of our RPS-Net: The network architecture utilizes a parallel residual design
where the optimal path is selected among a set of randomly sampled candidate paths for new tasks.
The residual design allows forward knowledge transfer and faster convergence for later tasks. The
random path selection approach is trained with a hybrid objective function that ensures the right
trade-off between network stability and plasticity, thus avoiding catastrophic forgetting.

The third stream of works explores dynamically adapting network architectures to cope with the
growing learning tasks. [22] proposed a network architecture that progressively adds new branches
for novel tasks that are laterally connected to the fixed existing branches. Similarly, [26] proposed a
network that not only grows incrementally but also expands hierarchically. Specific paths through the
network were selected for each learning task using a genetic algorithm in PathNet [4]. Afterwards,
task-relevant paths were fixed and reused for new tasks to speed-up the learning efficiency.

The existing adaptive network architectures come with their respective limitations e.g., [22]’s com-
plexity grows linearly with the tasks, [26] has an expensive training procedure and a somewhat rigid
architecture and [4] does not allow incrementally learning new classes due to a detached output
layer and a relatively expensive genetic learning algorithm used in [4]. In comparison, we propose a
random path selection methodology that provides a significant boost and enables faster convergence.
Furthermore, our approach combines the respective strengths of the above two types of methods by
introducing a distillation procedure alongside an exemplar-based memory replay to avoid catastrophic
forgetting.

3 Method

We consider the recognition problem in an incremental setting where new tasks are sequentially added.
Assuming a total of K tasks, each comprising of U classes. Our goal is to sequentially learn a deep
neural network, that not only performs well on the new tasks but also retains its performance on the
old tasks. To address this problem, we propose a random path selection approach (RPS-Net) for new
tasks that progressively builds on the previously acquired knowledge to facilitate faster convergence
and better performance. In the following, we explain our network architecture, the path selection
strategy, a hybrid objective function and the training procedure for incremental learning.

3.1 RPS-Net Architecture

Our network consists of L distinct layers (see Figure 1). Each layer ` ∈ [1, L] is constitutes a set of
basic building blocks, called modulesM`. For simplicity, we consider each layer to contain an equal
number of M modules, stacked in parallel, i.e.,M` = {M`

m}Mm=1, along with a skip connection
module M`

skip that carries the bypass signal. The skip connection module M`
skip is an identity

function when the feature dimensions do not change and a learnable module when the dimensions
vary between consecutive layers. A moduleM`

m is a learnable sub-network that maps the input
features to the outputs. In our case, we consider a simple combination of (conv-bn-relu-conv-bn)
layers for each module, similar to a single resnet block [6]. In contrast to a residual block which
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consists of a single identity connection and a residual branch, we have one skip connection and M
residual blocks stacked in parallel. The intuition behind developing such a parallel architecture is to
ensure multiple tasks can be continually learned without causing catastrophic interference with other
paths, while simultaneously providing parallelism to ensure efficiency.

Towards the end of each layer in RPS-Net, all the residual connections, as well as skip connections,
are combined together using element-wise addition to aggregate complimentary task-specific features
obtained from different paths. Remarkably, for the base-case when M = 1, the network is identical
to a conventional resnet model. After the Global Average Pooling (GAP) layer that collapses the
input feature maps to generate a final feature f ∈ RD, we use a fully connected layer classifier with
weights Wfc ∈ RD×C (C being the total number of classes) that is shared among all tasks.

For a given RPS-Net with M modules and L layers, we can define a path Pk ∈ RL×M for a task k:

Pk(`,m) =

{
1, if the moduleM`

m is added to the path,
0, otherwise.

(1)

The path Pk is basically arranged as a stack of one-hot encoded row vectors e(i) (i-th standard basis):

Pk =
{
Pk(`) ∈ {0, 1}M : Pk(`) = e(i) ≡

M∑
m=1

Pk(`,m) = 1
}
, s.t., i ∼ U

(
{Z ∩ [1,M ]}

)
, (2)

where i is the selected module index, uniformly sampled using U(·) over the set of integers [1,M ].

We define two set of paths Ptr
k and Pts

k that denote the train and inference paths, respectively. Both
are formulated as binary matrices: Ptr,ts

k ∈ {0, 1}L×M . When training the network, any mth module
in lth layer with Ptr

k (l,m) = 1 is activated and all such modules together constitute a training path
Ptr

k for task k. As we will elaborate in Sec. 3.2, the inference path is evolved during training by
sequentially adding newly discovered training paths and ends up in a “common” inference path for all
inputs, therefore our RPS-Net does not require knowledge about the task an input belongs to. Some
previous methods (e.g., [16]) need such information, which limits their applicability to real-world
incremental class-learning settings where one does not know in advance the corresponding task for
an input sample. Similarly, only the modules with Pts

k (`,m) = 1 are used in the inference stage.

3.2 Path Selection

With a total of K tasks, we assume a constant number of U classes that are observed in each kth task,
such that U = C/K. Without loss of generality, the proposed path selection strategy can also be
applied to a variable number of classes occurring in each task. The path selection scheme enables
incremental and bounded resource allocation, with progressive learning that ensures knowledge
exchange between the old and new tasks resulting in positive forward and backward transfer.

To promote resource reuse during training that in turn improves training speed and minimizes
computational requirements, we propose to perform path selection after every J task, where 1<J<K.
As a result, the path selection is performed only dK/Je times in total during the complete training
process. Our experiments show that J can be set to a higher value without sacrificing the incremental
learning performance (see Sec. 4.3). For every J tasks, N paths are randomly chosen and followed
by training process. The best path is then selected from these group of N sub-models and is shared
among the next J tasks. Further, we also stop the training of the old modules (i.e., fix their paths and
parameters) after the training for a particular group of tasks is completed. Hence, at any point, only L
layers with a maximum of one module are being trained.

The random path selection strategy is illustrated in Fig. 2. Our choice of random path generation as a
mechanism to select an optimal path is mainly inspired by the recent works of [27, 30, 20]. These
works show that random search for an optimal network architecture performs almost the same as
other computationally demanding approaches e.g., genetic algorithms and reinforcement learning
(RL) based methods. Besides, some incremental learning approaches resort to adding new resources
to the network, resulting in network expansion [22, 26]. In contrast, our path selection algorithm
does not result in linear expansion of resources since a new path is created only after J tasks and
overlapping modules are reused when the new path is intersecting old paths. Further, even when
all the modules are exhausted (saturated), the skip connections are always trained. We show via an
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Figure 2: Path Selection Approach: Given a task k, N random paths are initialized. For each path,
only the modules different from the previous inference path Pts

k−1 are used to form the training path
Ptr

k . Among N such paths, the optimal Pk is selected and combined with the Pts
k−1 to obtain Pts

k .
Notably, the path selection is only performed after J tasks. During training, the complexity remains
bounded by a standard single path network and the resources are shared between tasks.

extensive ablation study that even when all paths are saturated, our RPS-Net can still learn useful
representations as the skip connections and classification layer remains tunable in every case.

At any point in time, we train a single path (equivalent to a resnet) while rest of the inference paths
are fixed. Due to this, the path we use for a task k essentially learns the residual signal relative to
the fixed paths that were previously trained for old tasks. For example, if we are training Ptr

k , the
weights of Pts

bk/Jc YPtr
k are fixed, where Y denotes the exclusive disjunction (logical XOR operation).

Essentially, the complete Ptr
k is not used for training rather its disjoint portion that has not already

been trained for any of the old tasks is learned i.e., Ptr
k Y (Ptr

k ∧ Pts
bk/Jc). In this way, previous

knowledge is shared across the network via overlapping paths and skip connections. When the
network is already trained for several tasks, a new path for the current task only needs to learn higher
order residuals of the network. This has an added advantage that convergence becomes faster as we
learn more tasks since each new task will be learned taking advantage of the previous information.

The optimal path based on the performance of N path configurations is selected as Pk. All such
task-specific paths are progressively combined together to evolve a common inference path Pts

k ,

Pts
k = Ptr

1 ∨Ptr
2 . . . ∨Ptr

k , (3)

where ∨ denotes the inclusive disjunction (logical OR) operation. At each task k, the inference path
Pts
k is used to evaluate all previous classes.

3.3 Incremental Learning Objective

Loss function: We use a hybrid loss function that combines regular cross-entropy loss as well as a
distillation loss to incrementally train the network.

For a task k ∈ [1,K] with each task having U classes, we calculate the cross-entropy loss as follows,

Lce = −
1

n

∑
i

ti[1 : k ∗ U ] log(softmax(qi[1 : k ∗ U ])), (4)

where i denotes the example index, t(x) is the one-hot encoded true label, q(x) are the logits obtained
from the network’s last layer and n is the mini batch size. To keep the network robust to catastrophic
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forgetting, we also use distillation loss in the objective function,

Ldist =
1

n

∑
i

KL
(
log

(
σ

(
qi[1 : (k − 1) ∗ U ]

te

))
, σ

(
q′i[1 : (k − 1) ∗ U ]

te

))
. (5)

Here, σ is the softmax function and te is the temperature used in [7] and q′(x) are the logits obtained
from the networks’ previous state.

Controller: It is crucial to maintain a balance between the previously acquired learning and the
knowledge available from the newly presented task. If the learning is biased towards either of the
two objectives, it will result in either catastrophic forgetting (losing old task learning) or interference
(obstructing learning for the new task). Since our network is trained with a combined objective
function with Lce and Ldist, it is necessary to adequately control the plasticity of the network. We
propose the following controller that seeks to maintain an equilibrium between Lce and Ldist,

L = Lce + φ(k, γ) · Ldist, (6)

where, φ(k, γ) is a scalar coefficient function with γ as a scaling factor, introduced to increase the
distillation contribution to the total loss. Intuitively, as we progress through training, φ(k, γ) will
also increase to ensure that network remembers old information,

φ(k, γ) =

{
1, if k ≤ J
(k − J) ∗ γ, otherwise.

(7)

4 Experiments and Results

4.1 Implementation Details

Dataset and Protocol: For our experiments, we use evaluation protocols similar to iCARL [21]. We
incrementally learn 100 classes on CIFAR-100 in groups of 10, 20 and 50 at a time. For ImageNet,
we use the same subset as [21] comprising of 100 classes and incrementally learn them in groups of
10. After training on a new group of classes, we evaluate the trained model on test samples of all seen
classes (including current and previous tasks). Following iCARL [21], we restrict exemplar memory
budget to 2k samples for CIFAR-100 and ImageNet datasets. Note that unlike iCARL, we randomly
select our exemplars and do not employ any herding and exemplar selection mechanism.

We also experiment our model with MNIST and SVHN datasets. For this, we resize all images to
32×32 and keep a random exemplar set of 4.4k, as in [9]. We group 2 consecutive classes into one
task and incrementally learn five tasks. For evaluation, we report the average over all classes (A5).

Training: For the CIFAR100 dataset, we use resnet-18 along with max pooling after 5th, 7th
blocks and global average pooling (GAP) after 9th block. For ImageNet dataset, we use the standard
resnet-18 architecture as in [21]. After the GAP layer, a single fully connected layer with weights
Wfc ∈ R512×100 is used as a classifier. For MNIST, a simple 2 layered MLP (with 400 neurons
each), whereas for SVHN resnet-18 is used, similar to [9].

For each task, we train our model for 100 epochs using Adam [14] with te = 2, with learning rate
starting from 10−3 and divided by 2 after every 20 epochs. We set the controller’s scaling factor to
γ = 2.5 and γ = 10 respectively for CIFAR and ImageNet datasets. We use the ratio between the
number of training samples for a task and the fixed number of exemplars as the value for γ. We fix
M = 8 and J = 2 except for the 50 classes per task, where J = 1. We do not use any weight or
network regularization scheme such as dropout in our model. For augmentation, training images are
randomly cropped, flipped and rotated (< 100). For each task, we train N = 8 models in parallel
using a NVIDIA-DGX-1 machine. These models come from the randomly sampled paths in our
approach and may have some parts frozen due to an overlap with previous tasks. Our codes are
available https://github.com/brjathu/RPSnet.

4.2 Results and Comparisons

We extensively compare the proposed technique with existing state-of-the-art methods for incremental
learning. These include Elastic Weight Consolidation (EWC) [15], Riemannian Walk (RWalk) [3],
Learning without Forgetting (LwF) [16], Synaptic Intelligence (SI) [28], Memory Aware Synapses
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Figure 3: Results on CIFAR-100 with 10, 5 and 2 tasks (from left to right). We surpass STOA results.
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sults by 10.3%.

Methods MNIST(A5) SVHN(A5)
Joint training 97.53% 93.23%

EWC [15] 19.80% 18.21%
online-EWC [23] 19.77% 18.50%

SI [28] 19.67% 17.33%
MAS [2] 19.52% 17.32%
LwF [16] 24.17% -

GEM∗ [17] 92.20% 75.61%
DGR∗ [24] 91.24% -
RtF∗ [25] 92.56% -
RPS-Net∗ 96.16% 88.91%

Table 1: Comparison on MNIST and SVHN
datasets. Ours is a memory based approach (de-
noted by ‘∗’), and outperforms state-of-the-art.

(MAS) [2], Deep Model Consolidation (DMC) [29] and Incremental Classifier and Representation
Learning (iCARL) [21]. We further evaluate on three baseline approaches: Fixed Representation
(FixedRep) where the convolution part of the model is frozen and only the classifier is trained for
newly added classes, FineTune where the complete previously learnt model is tuned for the new data,
and Oracle where the model is trained on all samples from previous and current tasks.

Fig. 3 compares different methods on CIFAR-100 datasets, where we incrementally learn groups of
10, 20 and 50 classes at a time. The results indicate superior performance of the proposed method
in all settings. For the case of learning 10 classes at a time, we outperform iCARL [21] by an
absolute margin of 7.3%. Compared with the second best method, our approach achieves a relative
gain of 5.3% and 9.7% respectively for the case of incrementally learning 20 and 50 classes on
CIFAR-100 dataset. For the case of 50 classes per task, our performance is only 3.2% below the
Oracle approach, where all current and previous class samples are used for training. Fig. 4 compares
different methods on ImageNet dataset. The results show that for experimental settings consistent
with iCARL [21], our proposed method achieves a significant absolute performance gain of 10.3%
compared with the existing state-of-the-art [21]. Our experimental results indicate that commonly
used technique of fine-tuning a model on new classes is clearly an inferior approach, and results in
catastrophic forgetting. Table 1 compares different methods on MNIST and SVHN datasets following
experimental setting of [9]. The results show that RPS-Net, surpasses all previous methods with a
margin of 4.3% and 13.3% respectively for MNIST and SVHN datasets. The results further indicate
that the methods which do not use a memory perform relatively lower.

4.3 Ablation Studies and Analysis

Contribution from Each Component of RPS-Net: Fig. 5a studies the impact of progressively
integrating individual components of our RPS-Net. We begin with a simple baseline model with a
single path that achieves 37.97% classification accuracy on CIFAR100 dataset. When distillation
loss is used alongside the baseline model, the performance increases to 44.93%. The addition of our
proposed controller φ(k, γ) in the loss function further gives a significant boost of +6.83%, resulting
in an overall accuracy of 51.76%. Finally, the proposed multi-path selection algorithm along with
above mentioned components increases the classification accuracy up to 58.48%. This demonstrates
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that our two contributions, controller and multi-path selection, provide a combined gain of 13.6%
over baseline + distillation.

Increase in the #Parameters: Fig. 5b compares total parameters across tasks for Progressive Nets
[22], iCARL [21] and our RPS-Net on CIFAR100. Our model effectively reuses previous parameters,
and the model size does not increase significantly with tasks. After 10 tasks, RPS-Net has 72.26M
parameters on average, compared with iCARL (21.3M) and Progressive Nets (932.84M). In RPS-Net
the number of parameters and FLOPs increase logarithmically, while for Progressive Nets they
increase quadratically.

Scaling Factor γ: It controls the equilibrium between cross-entropy and distillation losses (or the
balance between new and old tasks). In Fig. 6, for smaller γ, the network tends to forget old
information while learning the new tasks well and vice versa. For example, when γ = 1 (same as
loss function used in iCaRL [21]) the performance drops after 5 tasks, showing the model is not at
its equilibrium state. On the other hand, γ = 8 achieves the best performance at earlier task (2, 3, 4
and 5), with drop in performance towards the later tasks (51% at task 10). Empirically, we found the
optimal value for γ = 2.5, to keep the equilibrium till last tasks.

Varying Blocks and Paths: One of the important restriction in RPS-Net design is the networks’
capacity, upper-bounded by M×L modules. As proposed in the learning strategy, a module is trained
only once for a path. Hence, it is interesting to study whether the network saturates for a high number
of tasks. To analyze this effect, we change the parameter M and J . Our results with varying M
are reported in Fig. 6, which demonstrate that the network can perform well even when all paths
are saturated. This effect is a consequence of our residual design where skip connections and last
classification layer are always trained, thus helping to continually learn new tasks even if the network
is saturated. If saturation occurs, the model has already learned the generalization of input distribution,
hence, a residual signal (carrying complementary information) via skip connections is enough to
adjust to a new task. Further, once the network has seen many tasks, it learns generalizable features
that can work well for future tasks with adaptation of the final classification layer weights.

In Fig. 6, we illustrate results with varying paths (paths ∝ 1
J ) in the network. We note that learning a

high number of paths degrades performance as the previously learned parameters are less likely to be
effectively reused. On the other hand, we obtain comparable performance with fewer paths (e.g., 2
for CIFAR-100).
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Figure 5: From left to right: (a) Contribution from each component of the RPS-Net, (b) Increase in
number of parameters with number of tasks, (c) RPS-Net performance on different memory sizes
and (d) Forward transfer showing faster convergence as the tasks increase.
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Task 4 Task 5 Task 6 Task 7 Task 8

Figure 7: Confusion matrices over 10 incremental tasks on CIFAR-100, showing backward knowl-
edge transfer.

Difference from Genetic Algorithms: We compare our random selection with a genetic algorithm
i.e., Binary Tournament Selection (BTS) for 25 maximum generations, on MNIST with 5 tasks (each
of 2 classes), using a simple 2 layer (100 neurons) MLP with M = 8, J = 1. On 5 runs, our proposed
random selection achieves an average accuracy of 96.52% vs BTS gets 96.32%. For same time
complexity as ours, BTS has an average accuracy of 71.24% for the first generation models. For BTS
to gain similar performance as our random selection, it needs an average of 10.2 generations (> #
random paths), hence BTS has more compute complexity. Sophisticated genetic algorithms may beat
random selection with a small margin, but likely with a high compute cost, which is not suitable for
an incremental classifier learning setting having multiple tasks.

Forward Transfer: The convergence trends shown in Fig. 5d demonstrate the forward knowledge
transfer for RPS-Net. We can see that for task-2, the model takes relatively longer to converge
compared with task-10. Precisely, for the final task, the model achieves 95% of the total performance
within only one epoch, while for the second task it starts with 65% and takes up-to 20 epochs to
achieve 95% of the final accuracy. This trends shows the faster convergence of our model for newer
tasks This effect is due to residual learning as well as overlapping module sharing in RPS-Net design,
demonstrating its forward transfer capability.

Backward Transfer: Fig. 7 shows evolution of our model with new tasks. We can see that the
performance of the current task (k) is lower than the previous tasks (<k). Yet, as the model evolves,
the performance of task k gradually increases. This demonstrates models’ capability of backward
knowledge transfer, which is also reflected in biological aspects of human brain. Specifically,
hippocampus in human brain accomplishes fast learning which is later slowly consolidated with
the slow learning at neocortex [19]. In Fig. 7, we can see the pattern of slow learning, with the
performance on new tasks gradually maturing. We also quantitatively validate Backwards Transfer
with BWT metric (see Eq. 3 in GEM [17], larger the better). After last task, BWT values are -0.1462
(RPS-Net) vs. -0.4602 (iCARL) which shows the better backward transfer capability of our model.

FLOPS comparison: As the number of tasks increase, the network’s complexity grows. As shown
in Fig. 6, with different configurations of modules and paths, the computational complexity of
our approach scales logarithmically. This proves that the complexity of RPS-Net is bounded by
O(log(#task)). This is due to the fact that the overlapping modules increase as the training
progresses. Further, in our setting we chose new paths after every J > 1 tasks. Hence, in practice
our computational complexity is well below the worst-case logarithmic curve. For example with a
setting of M=2, J=2 the computational requirements reduces by 63.7% while achieving the best
performance. We also show that even when a single path is used for all the tasks (M=1), our model
achieves almost the same performance as state-of-the-art with constant computational complexity.

5 Conclusion

Learning tasks appear in a sequential order in real-world problems and a learning agent must
continually increment its existing knowledge. Deep neural networks excel in the cumulative learning
setting where all tasks are available at once, but their performance deteriorates rapidly for incremental
learning. In this paper, we propose a scalable approach to class-incremental learning that aims to keep
the right balance between previously acquired knowledge and the newly presented tasks. We achieve
this using an optimal path selection approach that support parallelism and knowledge exchange
between old and new tasks. Further, a controlling mechanism is introduced to maintain an equilibrium
between the stability and plasticity of the learned model. Our approach delivers strong performance
gains on MNIST, SVHN, CIFAR-100 and ImageNet datasets for incremental learning problem.
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