I am a Senior Lecturer and ARC DECRA fellow at Faculty of IT, Monash University, Australia. I completed my PhD in Computer Vision from The University of Western Australia (UWA). My PhD thesis received multiple awards including the prestigious Robert Street Prize. My research interests are in computer vision, machine learning, deep learning, and affective computing.
PhD in Computer Science, 2015
The University of Western Austraia
Masters in Space Science, 2011
Luleå Tekniska Universitet
BSc in Engineering, 2009
National University of Sciences & Technology
Since convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data, these models have been extensively applied to image restoration and related tasks. Recently, another class of neural architectures, Transformers, have shown significant performance gains on natural language and high-level vision tasks. While the Transformer model mitigates the shortcomings of CNNs (i.e., limited receptive field and inadaptability to input content), its computational complexity grows quadratically with the spatial resolution, therefore making it infeasible to apply to most image restoration tasks involving high-resolution images. In this work, we propose an efficient Transformer model by making several key designs in the building blocks (multi-head attention and feed-forward network) such that it can capture long-range pixel interactions, while still remaining applicable to large images. Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks, including image deraining, single-image motion deblurring, defocus deblurring (single-image and dual-pixel data), and image denoising (Gaussian grayscale/color denoising, and real image denoising).
Deep models trained on source domain lack generalization when evaluated on unseen target domains with different data distributions. The problem becomes even more pronounced when we have no access to target domain samples for adaptation. In this paper, we address domain generalized semantic segmentation, where a segmentation model is trained to be domain-invariant without using any target domain data. Existing approaches to tackle this problem standardize data into a unified distribution. We argue that while such a standardization promotes global normalization, the resulting features are not discriminative enough to get clear segmentation boundaries. To enhance separation between categories while simultaneously promoting domain invariance, we propose a framework including two novel modules: Semantic-Aware Normalization (SAN) and Semantic-Aware Whitening (SAW). Specifically, SAN focuses on category-level center alignment between features from different image styles, while SAW enforces distributed alignment for the already center-aligned features. With the help of SAN and SAW, we encourage both intra-category compactness and inter-category separability. We validate our approach through extensive experiments on widely-used datasets (i.e. GTAV, SYNTHIA, Cityscapes, Mapillary and BDDS). Our approach shows significant improvements over existing state-of-the-art on various backbone networks.
Active learning (AL) is a promising ML paradigm that has the potential to parse through large unlabeled data and help reduce annotation cost in domains where labeling data can be prohibitive. Recently proposed neural network based AL methods use different heuristics to accomplish this goal. In this study, we demonstrate that under identical experimental settings, different types of AL algorithms (uncertainty based, diversity based, and committee based) produce an inconsistent gain over random sampling baseline. Through a variety of experiments, controlling for sources of stochasticity, we show that variance in performance metrics achieved by AL algorithms can lead to results that are not consistent with the previously reported results. We also found that under strong regularization, AL methods show marginal or no advantage over the random sampling baseline under a variety of experimental conditions. Finally, we conclude with a set of recommendations on how to assess the results using a new AL algorithm to ensure results are reproducible and robust under changes in experimental conditions. We share our codes to facilitate AL evaluations. We believe our findings and recommendations will help advance reproducible research in AL using neural networks.
Since convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data, these models have been extensively applied to image restoration and related tasks. Recently, another class of neural architectures, Transformers, have shown significant performance gains on natural language and high-level vision tasks. While the Transformer model mitigates the shortcomings of CNNs (i.e., limited receptive field and inadaptability to input content), its computational complexity grows quadratically with the spatial resolution, therefore making it infeasible to apply to most image restoration tasks involving high-resolution images. In this work, we propose an efficient Transformer model by making several key designs in the building blocks (multi-head attention and feed-forward network) such that it can capture long-range pixel interactions, while still remaining applicable to large images. Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks, including image deraining, single-image motion deblurring, defocus deblurring (single-image and dual-pixel data), and image denoising (Gaussian grayscale/color denoising, and real image denoising).
Vision transformers (ViT) have demonstrated impressive performance across various machine vision tasks. These models are based on multi-head self-attention mechanisms that can flexibly attend to a sequence of image patches to encode contextual cues. An important question is how such flexibility (in attending image-wide context conditioned on a given patch) can facilitate handling nuisances in natural images e.g., severe occlusions, domain shifts, spatial permutations, adversarial and natural perturbations. We systematically study this question via an extensive set of experiments encompassing three ViT families and provide comparisons with a high-performing convolutional neural network (CNN). We show and analyze the following intriguing properties of ViT: (a) Transformers are highly robust to severe occlusions, perturbations and domain shifts, e.g., retain as high as 60% top-1 accuracy on ImageNet even after randomly occluding 80% of the image content. (b) The robust performance to occlusions is not due to a bias towards local textures, and ViTs are significantly less biased towards textures compared to CNNs. When properly trained to encode shape-based features, ViTs demonstrate shape recognition capability comparable to that of human visual system, previously unmatched in the literature. (c) Using ViTs to encode shape representation leads to an interesting consequence of accurate semantic segmentation without pixel-level supervision. (d) Off-the-shelf features from a single ViT model can be combined to create a feature ensemble, leading to high accuracy rates across a range of classification datasets in both traditional and few-shot learning paradigms. We show effective features of ViTs are due to flexible and dynamic receptive fields possible via self-attention mechanisms.
While the untargeted black-box transferability of adversarial perturbations has been extensively studied before, changing an unseen model's decisions to a specific targeted class remains a challenging feat. In this paper, we propose a new generative approach for highly transferable targeted perturbations. We note that the existing methods are less suitable for this task due to their reliance on class-boundary information that changes from one model to another, thus reducing transferability. In contrast, our approach matches the perturbed image `distribution' with that of the target class, leading to high targeted transferability rates. To this end, we propose a new objective function that not only aligns the global distributions of source and target images, but also matches the local neighbourhood structure between the two domains. Based on the proposed objective, we train a generator function that can adaptively synthesize perturbations specific to a given input. Our generative approach is independent of the source or target domain labels, while consistently performs well against state-of-the-art methods on a wide range of attack settings. As an example, we achieve 32.63% target transferability from (an adversarially weak) VGG19BN to (a strong) WideResNet on ImageNet val. set, which is 4x higher than the previous best generative attack and 16x better than instance-specific iterative attack.
Deep neural networks have achieved remarkable performance on a range of classification tasks, with softmax cross-entropy (CE) loss emerging as the de-facto objective function. The CE loss encourages features of a class to have a higher projection score on the true class-vector compared to the negative classes.However, this is a relative constraint and does not explicitly force different class features to be well-separated. Motivated by the observation that ground-truth class representations in CE loss are orthogonal (one-hot encoded vectors), we develop a novel loss function termed “Orthogonal Projection Loss” (OPL) which imposes orthogonality in the feature space. OPL augments the properties of CE loss and directly enforces inter-class separation alongside intra-class clustering in the feature space through orthogonality constraints on the mini-batch level. As compared to other alternatives of CE, OPL offers unique advantages e.g., no additional learnable parameters, does not require careful negative mining and is not sensitive to the batch size. Given the plug-and-play nature of OPL, we evaluate it on a diverse range of tasks including image recognition (CIFAR-100), large-scale classification (ImageNet), domain generalization (PACS) and few-shot learning (miniImageNet, CIFAR-FS, tiered-ImageNet and Meta-dataset) and demonstrate its effectiveness across the board. Furthermore, OPL offers better robustness against practical nuisances such as adversarial attacks and label noise.
Astounding results from transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. This has led to exciting progress on a number of tasks while requiring minimal inductive biases in the model design. This survey aims to provide a comprehensive overview of the transformer models in the computer vision discipline and assumes little to no prior background in the field. We start with an introduction to fundamental concepts behind the success of transformer models i.e., self-supervision and self-attention. Transformer architectures leverage self-attention mechanisms to encode long-range dependencies in the input domain which makes them highly expressive. Since they assume minimal prior knowledge about the structure of the problem, self-supervision using pretext tasks is applied to pre-train transformer models on large-scale (unlabelled) datasets. The learned representations are then fine-tuned on the downstream tasks, typically leading to excellent performance due to the generalization and expressivity of encoded features. We cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering and visual reasoning), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works.
The existing zero-shot detection approaches project visual features to the semantic domain for seen objects, hoping to map unseen objects to their corresponding semantics during inference. However, since the unseen objects are never visualized during training, the detection model is skewed towards seen content, thereby labeling unseen as background or a seen class. In this work, we propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain. Consequently, the major challenge becomes, how to accurately synthesize unseen objects merely using their class semantics? Towards this ambitious goal, we propose a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them. Further, using a unified model, we ensure the synthesized features have high diversity that represents the intra-class differences and variable localization precision in the detected bounding boxes. We test our approach on three object detection benchmarks, PASCAL VOC, MSCOCO, and ILSVRC detection, under both conventional and generalized settings, showing impressive gains over the state-of-the-art methods.
With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography, medical imaging, and remote sensing. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for a variety of image processing tasks, including image denoising, super-resolution, and image enhancement.
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems e.g., for classification, segmentation and object detection. The vulnerability of DNNs against such attacks can prove a major roadblock towards their real-world deployment. Transferability of adversarial examples demand generalizable defenses that can provide cross-task protection. Adversarial training that enhances robustness by modifying target model's parameters lacks such generalizability. On the other hand, different input processing based defenses fall short in the face of continuously evolving attacks. In this paper, we take the first step to combine the benefits of both approaches and propose a self-supervised adversarial training mechanism in the input space. By design, our defense is a generalizable approach and provides significant robustness against the unseen adversarial attacks (eg by reducing the success rate of translation-invariant ensemble attack from 82.6% to 31.9% in comparison to previous state-of-the-art). It can be deployed as a plug-and-play solution to protect a variety of vision systems, as we demonstrate for the case of classification, segmentation and detection.
The availability of large-scale datasets has helped unleash the true potential of deep convolutional neural networks (CNNs). However, for the single-image denoising problem, capturing a real dataset is an unacceptably expensive and cumbersome procedure. Consequently, image denoising algorithms are mostly developed and evaluated on synthetic data that is usually generated with a widespread assumption of additive white Gaussian noise (AWGN). While the CNNs achieve impressive results on these synthetic datasets, they do not perform well when applied on real camera images, as reported in recent benchmark datasets. This is mainly because the AWGN is not adequate for modeling the real camera noise which is signal-dependent and heavily transformed by the camera imaging pipeline. In this paper, we present a framework that models camera imaging pipeline in forward and reverse directions. It allows us to produce any number of realistic image pairs for denoising both in RAW and sRGB spaces. By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets. The parameters in our model are ~5 times lesser than the previous best method for RAW denoising. Furthermore, we demonstrate that the proposed framework generalizes beyond image denoising problem e.g., for color matching in stereoscopic cinema.
Humans can continuously learn new knowledge as their experience grows. In contrast, previous learning in deep neural networks can quickly fade out when they are trained on a new task. In this paper, we hypothesize this problem can be avoided by learning a set of generalized parameters, that are neither specific to old nor new tasks. In this pursuit, we introduce a novel meta-learning approach that seeks to maintain an equilibrium between all the encountered tasks. This is ensured by a new meta-update rule which avoids catastrophic forgetting. In comparison to previous meta-learning techniques, our approach is task-agnostic. When presented with a continuum of data, our model automatically identifies the task and quickly adapts to it with just a single update. We perform extensive experiments on five datasets in a class-incremental setting, leading to significant improvements over the state of the art methods (e.g., a 21.3% boost on CIFAR100 with 10 incremental tasks). Specifically, on large-scale datasets that generally prove difficult cases for incremental learning, our approach delivers absolute gains as high as 19.1% and 7.4% on ImageNet and MS-Celeb datasets, respectively.
Deep neural networks can easily be fooled by an adversary using minuscule perturbations to input images. The existing defense techniques suffer greatly under white-box attack settings, where an adversary has full knowledge about the network and can iterate several times to find strong perturbations. We observe that the main reason for the existence of such vulnerabilities is the close proximity of different class samples in the learned feature space of deep models. This allows the model decisions to be totally changed by adding an imperceptible perturbation in the inputs. To counter this, we propose to class-wise disentangle the intermediate feature representations of deep networks specifically forcing the features for each class to lie inside a convex polytope that is maximally separated from the polytopes of other classes. In this manner, the network is forced to learn distinct and distant decision regions for each class. We observe that this simple constraint on the features greatly enhances the robustness of learned models, even against the strongest white-box attacks, without degrading the classification performance on clean images. We report extensive evaluations in both black-box and white-box attack scenarios and show significant gains in comparison to state-of-the-art defenses.
Incremental life-long learning is a main challenge towards the long-standing goal of Artificial General Intelligence. In real-life settings, learning tasks arrive in a sequence and machine learning models must continually learn to increment already acquired knowledge. The existing incremental learning approaches fall well below the state-of-the-art cumulative models that use all training classes at once. In this paper, we propose a random path selection algorithm, called RPS-Net, that progressively chooses optimal paths for the new tasks while encouraging parameter sharing and reuse. Our approach avoids the overhead introduced by computationally expensive evolutionary and reinforcement learning based path selection strategies while achieving considerable performance gains. As an added novelty, the proposed model integrates knowledge distillation and retrospection along with the path selection strategy to overcome catastrophic forgetting. In order to maintain an equilibrium between previous and newly acquired knowledge, we propose a simple controller to dynamically balance the model plasticity. Through extensive experiments, we demonstrate that the proposed method surpasses the state-of-the-art performance on incremental learning and by utilizing parallel computation this method can run in constant time with nearly the same efficiency as a conventional deep convolutional neural network.
Real-world object classes appear in imbalanced ratios. This poses a significant challenge for classifiers which get biased towards frequent classes. We hypothesize that improving the generalization capability of a classifier should improve learning on imbalanced datasets. Here, we introduce the first hybrid loss function that jointly performs classification and clustering in a single formulation. Our approach is based on an 'affinity measure' in Euclidean space that leads to the following benefits: (1) direct enforcement of maximum margin constraints on classification boundaries, (2) a tractable way to ensure uniformly spaced and equidistant cluster centers, (3) flexibility to learn multiple class prototypes to support diversity and discriminability in feature space. Our extensive experiments demonstrate the significant performance improvements on visual classification and verification tasks on multiple imbalanced datasets. The proposed loss can easily be plugged in any deep architecture as a differentiable block and demonstrates robustness against different levels of data imbalance and corrupted labels.
Deep neural networks are vulnerable to adversarial attacks, which can fool them by adding minuscule perturbations to the input images. The robustness of existing defenses suffers greatly under white-box attack settings, where an adversary has full knowledge about the network and can iterate several times to find strong perturbations. We observe that the main reason for the existence of such perturbations is the close proximity of different class samples in the learned feature space. This allows model decisions to be totally changed by adding an imperceptible perturbation in the inputs. To counter this, we propose to class-wise disentangle the intermediate feature representations of deep networks. Specifically, we force the features for each class to lie inside a convex polytope that is maximally separated from the polytopes of other classes. In this manner, the network is forced to learn distinct and distant decision regions for each class. We observe that this simple constraint on the features greatly enhances the robustness of learned models, even against the strongest white-box attacks, without degrading the classification performance on clean images. We report extensive evaluations in both black-box and white-box attack scenarios and show significant gains in comparison to state-of-the art defenses.
Convolutional Neural Networks have achieved significant success across multiple computer vision tasks. However, they are vulnerable to carefully crafted, human-imperceptible adversarial noise patterns which constrain their deployment in critical security-sensitive systems. This paper proposes a computationally efficient image enhancement approach that provides a strong defense mechanism to effectively mitigate the effect of such adversarial perturbations. We show that deep image restoration networks learn mapping functions that can bring off-the-manifold adversarial samples onto the natural image manifold, thus restoring classification towards correct classes. A distinguishing feature of our approach is that, in addition to providing robustness against attacks, it simultaneously enhances image quality and retains models performance on clean images. Furthermore, the proposed method does not modify the classifier or requires a separate mechanism to detect adversarial images. The effectiveness of the scheme has been demonstrated through extensive experiments, where it has proven a strong defense in gray-box settings. The proposed scheme is simple and has the following advantages: (1) it does not require any model training or parameter optimization, (2) it complements other existing defense mechanisms, (3) it is agnostic to the attacked model and attack type and (4) it provides superior performance across all popular attack algorithms.
Learning unbiased models on imbalanced datasets is a significant challenge. Rare classes tend to get a concentrated representation in the classification space which hampers the generalization of learned boundaries to new test examples. In this paper, we demonstrate that the Bayesian uncertainty estimates directly correlate with the rarity of classes and the difficulty level of individual samples. Subsequently, we present a novel framework for uncertainty based class imbalance learning that follows two key insights: First, classification boundaries should be extended further away from a more uncertain (rare) class to avoid overfitting and enhance its generalization. Second, each sample should be modeled as a multi-variate Gaussian distribution with a mean vector and a covariance matrix defined by the sample's uncertainty. The learned boundaries should respect not only the individual samples but also their distribution in the feature space. Our proposed approach efficiently utilizes sample and class uncertainty information to learn robust features and more generalizable classifiers. We systematically study the class imbalance problem and derive a novel loss formulation for max-margin learning based on Bayesian uncertainty measure. The proposed method shows significant performance improvements on six benchmark datasets for face verification, attribute prediction, digit/object classification and skin lesion detection.
3D shape generation is a challenging problem due to the high-dimensional output space and complex part configurations of real-world objects. As a result, existing algorithms experience difficulties in accurate generative modeling of 3D shapes. Here, we propose a novel factorized generative model for 3D shape generation that sequentially transitions from coarse to fine scale shape generation. To this end, we introduce an unsupervised primitive discovery algorithm based on a higher-order conditional random field model. Using the primitive parts for shapes as attributes, a parameterized 3D representation is modeled in the first stage. This representation is further refined in the next stage by adding fine scale details to shape. Our results demonstrate improved representation ability of the generative model and better quality samples of newly generated 3D shapes. Further, our primitive generation approach can accurately parse common objects into a simplified representation.
Spectral signatures of natural scenes were earlier found to be distinctive for different scene types with varying spatial envelope properties such as openness, naturalness, ruggedness, and symmetry. Recently, such handcrafted features have been outclassed by deep learning based representations. This paper proposes a novel spectral description of convolution features, implemented efficiently as a unitary transformation within deep network architectures. To the best of our knowledge, this is the first attempt to use deep learning based spectral features explicitly for image classification task. We show that the spectral transformation decorrelates convolutional activations, which reduces co-adaptation between feature detections, thus acts as an effective regularizer. Our approach achieves significant improvements on three large-scale scene-centric datasets (MIT-67, SUN-397, and Places-205). Furthermore, we evaluated the proposed approach on the attribute detection task where its superior performance manifests its relevance to semantically meaningful characteristics of natural scenes.
Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes is abundant making them an over-represented majority, and data of other classes is scarce, making them an under-represented minority. This imbalance makes it challenging for a classifier to appropriately learn the discriminating boundaries of the majority and minority classes. In this work, we propose a cost sensitive deep neural network which can automatically learn robust feature representations for both the majority and minority classes. During training, our learning procedure jointly optimizes the class dependent costs and the neural network parameters. The proposed approach is applicable to both binary and multi-class problems without any modification. Moreover, as opposed to data level approaches, we do not alter the original data distribution which results in a lower computational cost during the training process. We report the results of our experiments on six major image classification datasets and show that the proposed approach significantly outperforms the baseline algorithms. Comparisons with popular data sampling techniques and cost sensitive classifiers demonstrate the superior performance of our proposed method.
Face recognition from image sets has numerous real-life applications including recognition from security and surveillance systems, multi-view camera networks and personal albums. An image set is an unordered collection of images (e.g., video frames, images acquired over long term observations and personal albums) which exhibits a wide range of appearance variations. The main focus of the previously developed methods has therefore been to find a suitable representation to optimally model these variations. This paper argues that such a representation could not necessarily encode all of the information contained in the set. The paper, therefore, suggests a different approach which does not resort to a single representation of an image set. Instead, the images of the set are retained in their original form and an efficient classification strategy is developed which extends well-known simple binary classifiers for the task of multi-class image set classification. Unlike existing binary to multi-class extension strategies, which require multiple binary classifiers to be trained over a large number of images, the proposed approach is efficient since it trains only few binary classifiers on very few images. Extensive experiments and comparisons with existing methods show that the proposed approach achieves state of the art performance for image set classification based face and object recognition on a number of challenging datasets.
Recent advances in deep learning have resulted in human-level performances on popular unconstrained face datasets including Labeled Faces in the Wild and YouTube Faces. To further advance research, IJB-A benchmark was recently introduced with more challenges especially in the form of extreme head poses. Registration of such faces is quite demanding and often requires laborious procedures like facial landmark localization. In this paper, we propose a Convolutional Neural Networks based data-driven approach which learns to simultaneously register and represent faces. We validate the proposed scheme on template based unconstrained face identification. Here, a template contains multiple media in the form of images and video frames. Unlike existing methods which synthesize all template media information at feature level, we propose to keep the template media intact. Instead, we represent gallery templates by their trained one-vs-rest discriminative models and then employ a Bayesian strategy which optimally fuses decisions of all medias in a query template. We demonstrate the efficacy of the proposed scheme on IJB-A, YouTube Celebrities and COX datasets where our approach achieves significant relative performance boosts of 3.6%, 21.6% and 12.8% respectively.
To find the optimal nonlinear separating boundary with maximum margin in the input data space, this paper proposes Contractive Rectifier Networks (CRNs), wherein the hidden-layer transformations are restricted to be contraction mappings. The contractive constraints ensure that the achieved separating margin in the input space is larger than or equal to the separating margin in the output layer. The training of the proposed CRNs is formulated as a linear support vector machine (SVM) in the output layer, combined with two or more contractive hidden layers. Effective algorithms have been proposed to address the optimization challenges arising from contraction constraints. Experimental results on MNIST, CIFAR-10, CIFAR-100 and MIT-67 datasets demonstrate that the proposed contractive rectifier networks consistently outperform their conventional unconstrained rectifier network counterparts.
This paper introduces a new approach, called reverse training, to efficiently extend binary classifiers for the task of multi-class image set classification. Unlike existing binary to multi-class extension strategies, which require multiple binary classifiers, the proposed approach is very efficient since it trains a single binary classifier to optimally discriminate the class of the query image set from all others. For this purpose, the classifier is trained with the images of the query set (labelled positive) and a randomly sampled subset of the training data (labelled negative). The trained classifier is then evaluated on rest of the training images. The class of these images with their largest percentage classified as positive is predicted as the class of the query image set. The confidence level of the prediction is also computed and integrated into the proposed approach to further enhance its robustness and accuracy. Extensive experiments and comparisons with existing methods show that the proposed approach achieves state of the art performance for face and object recognition on a number of datasets.
Image set classification finds its applications in a number of real-life scenarios such as classification from surveillance videos, multi-view camera networks and personal albums. Compared with single image based classification, it offers more promises and has therefore attracted significant research attention in recent years. Unlike many existing methods which assume images of a set to lie on a certain geometric surface, this paper introduces a deep learning framework which makes no such prior assumptions and can automatically discover the underlying geometric structure. Specifically, a Template Deep Reconstruction Model (TDRM) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The initialized TDRM is then separately trained for images of each class and class-specific DRMs are learnt. Based on the minimum reconstruction errors from the learnt class-specific models, three different voting strategies are devised for classification. Extensive experiments are performed to demonstrate the efficacy of the proposed framework for the tasks of face and object recognition from image sets. Experimental results show that the proposed method consistently outperforms the existing state of the art methods.
We propose a deep learning framework for image set classification with application to face recognition. An Adaptive Deep Network Template (ADNT) is defined whose parameters are initialized by performing unsupervised pre-training in a layer-wise fashion using Gaussian Restricted Boltzmann Machines (GRBMs). The pre-initialized ADNT is then separately trained for images of each class and class-specific models are learnt. Based on the minimum reconstruction error from the learnt class-specific models, a majority voting strategy is used for classification. The proposed framework is extensively evaluated for the task of image set classification based face recognition on Honda/UCSD, CMU Mobo, YouTube Celebrities and a Kinect dataset. Our experimental results and comparisons with existing state-of-the-art methods show that the proposed method consistently achieves the best performance on all these datasets.